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a b s t r a c t

CRUSDE is a plug-in based simulation framework written in C/C++ for Linux platforms (installation
information, download and test cases: http://www.grapenthin.org/crusde). It utilizes Green's functions
for simulations of the Earth's response to changes in surface loads. Such changes could involve, for
example, melting glaciers, oscillating snow loads, or lava flow emplacement. The focus in the simulation
could be the response of the Earth's crust in terms of stress changes, changes in strain rates, or simply
uplift or subsidence and the respective horizontal displacements of the crust (over time).

Rather than implementing a variety of specific models, CRUSDE approaches crustal deformation problems
from a general formulation in which model elements (Green's function, load function, relaxation function,
load history), operators, pre- and postprocessors, as well as input and output routines are independent,
exchangeable, and reusable on the basis of a plug-in approach (shared libraries loaded at runtime). We derive
the general formulation CRUSDE is based on, describe its architecture and use, and demonstrate its capabilities
in a test case.

With CRUSDE users can: (1) dynamically select software components to participate in a simulation (through
XML experiment definitions), (2) extend the framework independently with new software components and
reuse existing ones, and (3) exchange software components and experiment definitions with other users.

CRUSDE's plug-in mechanism aims for straightforward extendability allowing modelers to add new Earth
models/response functions. Current Green's function implementations include surface displacements due to
the elastic response, final relaxed response, and pure thick plate response for a flat Earth. These can be
combined to express exponential decay from elastic to final relaxed response, displacement rates due to one or
multiple disks, irregular loads, or a combination of these. Each load can have its own load history and crustal
decay function.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Crustal deformation studies are concerned with responses of the
Earth's lithosphere to endogen (e.g., tectonic or magmatic) and
exogen (e.g., glacial) processes. These processes can be understood
as a load force that is applied to either the interior or the surface of
the lithosphere which is composed of crust and upper mantle. Here,
we focus on surface loads which disturb the isostatic equilibrium of
the lithosphere. The resulting changes (e.g., uplift or subsidence) can
be quantified by geophysical data, which in turn can be modeled to
derive properties of the Earth.

To illustrate this, Fig. 1 depicts the Earth–load response system.
The surface load and its temporal change, the load history, are the
input signal that transform the lithosphere. Those measurable changes
are the output signal (e.g. surface displacement, gravity change, etc.).
The lithosphere can be understood as a low-pass filter that passes long
wavelengths (e.g., Watts, 2001), which means that its properties
determine how well the frequency content of the input is reflected
in the output. A very flexible crust deforms such that many of the
irregularities (small wavelength, high frequency) of an input load (say,
a lava flow) can be identified in the output, whereas a stiff crust results
in a very smooth gradient over the surface displacements with
“smooth edges” (long wavelengths/small frequency). This view pro-
vides intuition useful for the rest of the paper: The application of a
different filter function only requires swapping out one component of
the Earth–load response-system, rather than setting it up from scratch.
Amongst others, these filters could express load induced changes in
stress state (see Boussinessq Problem, e.g., Malvern, 1969), or surface
displacement (e.g., Farrell, 1972; Pinel et al., 2007). The case of induced
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surface displacements is schematically shown in Fig. 1 and will be the
focus of this paper.

The goal of surface load studies depends much on the problem
at hand. Some are interested in the properties of the crust (e.g.,
Grapenthin et al., 2006; Pinel et al., 2007), the viscosity of the
upper mantle (e.g., Pagli et al., 2007), or how the melting of ice
caps can contribute to future volcanism (e.g. Jull and McKenzie,
1996; Pagli and Sigmundsson, 2008), and others want to forward
model a known load, which can be used to isolate other signals in
the data (e.g., Agnew, 1997; Grapenthin et al., 2010, in press). The
basic principle for these applications remains the same: the
conceptual model of the Earth–load response-system shown in
Fig. 1 is translated into the mathematical framework of a convolu-
tion of a load with a Green's function, which is, in effect, the
filtering operation described above.

Green's functions represent the unit impulse response of a
system to an input (e.g., the surface will subside by X mm when a
load of Y kg at distance Z km is applied; more see below and
Roach, 1982). Considering that many Green's functions for differ-
ent problems/Earth structures and a variety of problem domains
exist, we should consider creating a tool that is heavily based on
principles of software reuse. This would minimize the efforts of
individual users when they try to solve their specific (loading)
problem with a Green's function approach.

In this paper I present the architecture and implementation of
CRUSDE (installation information, download, and test cases at
http://www.grapenthin.org/crusde), a simulation framework for
composable crustal deformation studies written in C/C++ for
Linux platforms. I derive a generalized formal model that utilizes
Green's functions to express the response of the Earth's crust to a
change in surface loads. The formal model translates into a data
flow model which forms the basis of CRUSDE's architecture. The
implementation is validated through comparisons of modeled
surface displacements due to a disk load to analytical solutions
and a reference implementation.

This paper focuses (1) on the introduction of a flexible tool that
can be used to solve a range of problems while using the same
core functionality, and (2) on providing a blueprint on how to set
up niche scientific tools that enable reusability which ultimately
opens ways towards community tools rather than a collection of
redundant case-based binaries.

2. Green's functions for surface loading

Green's functions are auxiliary functions that provide a parti-
cular method to solve boundary value problems (Roach, 1982).
They can be understood as the unit response of a linear filter to a
Dirac delta function, i.e. a force acting on a very small entity (e.g., a
short time (unit impulse), or a point (unit point mass)). Under the
assumption that the Earth acts as a linear, space invariant filter as
described by, e.g., Grapenthin (2007, Section 3.3), Green's functions
are frequently used in surface loading studies (e.g., Farrell, 1972;
Agnew, 1997; Pinel et al., 2007).

This basic idea is illustrated in Fig. 2. We consider the dynamics
of a point r! (cylindrical coordinates) on the Earth's surface, which
is displaced due to the application of a unit point mass at point r′

!
.

The response at r! due to the unit point mass Lð r′!Þ is defined by
the Green's function Gð r!; r′

!Þ. A real load, however, covers an area
instead of a single point. This can be abstracted as a grid of unit
point masses acting on (ideally) equidistant points of the surface
(on non-uniform grids, the term dS in Eq. (1) needs to be adjusted
for each area fragment). Because we assume a linear system, we
can integrate over this area, A, to sum the displacements, U, each
unit point mass induces at point r!

Uð r!Þ¼
Z
A
Gð r!� r′

!ÞLð r′!Þ dS

U ¼ GnnL ð1Þ

where the double-asterisk notation denotes a 2D convolution (e.g.,
Meffert and Hochmuth, 2004). Since unit point masses can be zero
in A, Eq. (1) implies that geometries of loads are not restricted to a
particular shape other than restrictions imposed by the underlying
grid size.

Each conceptual model of the Earth to be simulated (e.g.,
homogeneous elastic half-space, layered half-space, etc.) as well
as the actual response to be modeled (displacement, stress change,
etc.) requires the derivation of its own Green's function. A variety
of Green's functions exists already (e.g., Longman, 1962; Farrell,
1972; Pinel et al., 2007); all of which could be used within the
framework of Eq. (1). This, however, can be expanded to include
load histories and relaxation functions.

Load
history

max

min

Load

surface displacement

Relaxation

Lithosphere/Asthenosphere

Input

Filter

Output

Fig. 1. Conceptual model of the Earth-load response system. The load (input, solid black rectangle) is applied to the pointed black line which represents the initial state of the
Earth's surface. The Earth (filter) responds to the mass force (little black arrows) through surface displacement, changing its state to the one denoted by the solid black line
(output). The load, however, may vary over time which is denoted by a load history. At first it might raise to a maximum level which results in maximum displacement and
then it could drop to a minimum represented by the dashed gray lines that limit or extend the load box. Depending on the load history, the displacement might alternate
between the upper and the lower dashed, gray surface lines, linked to minimum and maximum load, respectively. In addition to these elastic properties, another important
property is that of time dependent stress relaxation or material creep which is the adjustment to a new stress state by ductile material flow, which in the depicted system is a
filter property.
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3. A generalized load response function

Green's functions, G1 and GH, respectively for the instanta-
neous and final relaxed response of the lithosphere to a surface
load are derived by Pinel et al. (2007). These assume a flat elastic
half-space Earth model or an elastic plate over an inviscid fluid,
respectively. The notation G1 and GH for the Green's functions is
adapted from Pinel et al. (2007) who use z to define the lower
surface of the elastic plate: when z¼1, we have a fully elastic
medium and hence the instantaneous response G1; for the final
relaxed response, GH, Pinel et al. (2007) assume zo1, which
defines a lower depth, H, of the elastic plate where hydrostatic
fluid pressure is applied.

To realize the temporal evolution of displacements from the
instantaneous to the final relaxed response, we introduce a
function that describes the creep of ductile material. Analog to
Pinel et al. (2007, Eq. 17) Eq. (1) can be expanded to

Ut ¼ ½ðG1�GHÞnnL� � Rt þ GH
nnL ð2Þ

where Ut is the displacement at time t and Rt is the time
dependent creep function, e.g. exponential decay (Pinel et al.,
2007). The first half of the sum in Eq. (2) represents the viscous
response of the lithosphere, which takes time to fully develop. The
other half of Eq. (2) is the instantaneous elastic response of the
crust, which has no time dependence.

For the case of time dependent load changes Pinel et al. (2007)
give an expression for the displacement rate in their Eqs. (18) and
(A3). Separation of variables for a time dependent load of the form
Λð r!; tÞ ¼ Lð r!ÞHðtÞ must be possible to write

_Ut ¼ ½ðG1�GHÞnnL� � ð _Rn _HÞt þ ½G1
nnL� � ðδn _HÞt : ð3Þ

The requirement of separation of variables merely implies that
each continuous “load chunk” has to obey the same load history
function (initial values may vary). However, the assumption of
linearity allows us to apply multiple loads at a time, each with
their own load history, which mitigates the severity of the
requirements posed by separation of variables.

In Eqs. (2) and (3) it is straightforward to substitute the term
G1�GH with G, a new Green's functions that expresses this
sum. Since the convolution of a function with the δ�function is
an identity operation, we can now give a general form for Eqs. (1)–(3)
as

Ut ¼ ∑
n�1

i ¼ 0
½GinnL� � ðRinHiÞt ð4Þ

where n is the total number of superpositions of different applica-
tions of a Green's function that are necessary to find a solution for the
respective problem (e.g., n¼2 for Eqs. (2) and (3); n¼1 for Eq. (1)
with R¼H ¼ δÞ.

In Eq. (4) the context determines whether time derivatives are
to be used for all Ri and Hi, which yields the displacement rate _Ut

rather than the displacement Ut. Currently, the modeler has to
ensure consistent use of time derivatives; future versions of CRUSDE

should add a safety mechanism. Note that the load L in Eq. (4)
lacks the summation index since it defines the problem at hand
and hence should not vary amongst the application of different
Green's functions. Since the Earth–load response system is
assumed to behave linearly, the convolution theorem holds and
the convolutions in Eq. (4) can be performed as multiplications in
the spectral domain which greatly enhances the performance of
the operation (CRUSDE's default convolution operator implements
the convolution in the spectral domain; for details see e.g.,
Grapenthin, 2007, Section 3.6).

4. CRUSDE's design

4.1. Conceptual outline

The basic idea behind CRUSDE's architecture is in transferring the
modularized structure of Eq. (4) into software, which we will refer
to as a simulation framework. We see each operand and the
convolution operator as abstract software components of a com-
posable simulation model (Grapenthin, 2007, i.e., the user selects
specific module realizations during runtime, which makes recom-
pilation unnecessary). Fig. 3 maps the terms in Eq. (4) to software
components in CRUSDE and shows the data flow between them.
The core of Eq. (4) is included for reference; its terms are
vertically aligned with the corresponding software components
shown in the boxes. The boxes in dark grey with bold arrows
mark the minimum of participating software components; ele-
ments in light gray are optional. The mechanism realizing the
summation in Eq. (4) is left out of the figure, but explained
further below.

To realize the depicted data flow connecting the dark boxes, the
software components implement role-specific interfaces that
allow access to their data and operations. Conceptually speaking,
a Green's function and a Load function will provide two dimen-
sional matrices equal in size. The 2D convolution operator can
request these matrices and convolve them. The result handler
takes the result matrix for the current time step and writes it to
the file system. Keeping the result handler component separate
from the operator allows support of a range of (user defined)
output formats. If desired, the result handler could implement
an interface to third party software and hence enable CRUSDE for
re-use as a subsystem in more complex systems. The optional
postprocessors can be used to transform results into other coordi-
nate systems, compute ratios, perform statistical analyses, etc. The
beauty of this approach lies in the total ignorance with which
the convolution operator can approach the implementation details
of its input functions. These functions only need to provide the
required interfaces as specified (see Appendix A in supplementary
data) and thus hide the complexity of their functionality from the
system. Hence, one implementation of a convolution operator can
be reused with a variety of input functions. This concept obviously
results in software management overhead, which we detail in
Section 4.2. Furthermore, the user who assembles the model must
be intimately familiar with the functions used such that physically
meaningful models are created.

Once we implement this mechanism which hides the complex-
ity of individual components behind public interfaces, we create a

Fig. 2. Green's function for the response to an unit point mass. The displacement in
point r due to a load Lðr′Þ that is applied at r′ is expressed by the Green's function G
(r,r’). Since real data, e.g. from GPS stations, comes with displacements split into
spatial directions, instead of calculating the total displacement it might be useful to
find separate Green's functions for horizontal h and vertical v displacements. This is
furthermore necessary since Green's functions are solutions to partial differential
equations. The gray arrows represent a load model that is an array composed of
many unit point masses, each having an impact on r. Utilizing Green's method (Eq.
1) and thus convolving the load with a Green's function, the impact of all unit point
masses that compose the load is attributed to the displacement at r.
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set of well-defined black-boxes1 that enable software reusability.
We can exploit this through reuse of existing components in new,
more complex components (of the same category, see below).
The reflexive arrows on the corners of the boxes in Fig. 3 indicate
where this is allowed. The benefits of this are obvious when
looking at, e.g., Pinel et al. (2007, Eqs. (2) and (9)) where
Green's functions for an elastic half-space are reused in viscoelastic
expressions.

Another example utilizing the reusability mechanism is dis-
played in the operator row of Fig. 3 where the 2D convolution
operator is reused within the 3D convolution operator. Including a
load history or a transition from instantaneous to final relaxed
response into a simulation requires a convolution in space and
time. Since convolutions of higher dimensions can be decomposed
into multiple convolutions of lower dimension, the 3D convolution
operator can be realized as shown by the dotted lines in Fig. 3.
Therefore, an implementation of a 2D (spatial) convolution opera-
tor can be reused within a 3D (2D-space and time) convolution
operator. The full implementation includes a 1D convolution of a
creep function and a load history function, which is followed by a
scalar multiplication of one element of the result vector with the
2D (spatial) convolution result. In cases which use just one of R or
H, the 1D convolution can be skipped since this is the equivalent of
a convolution with a δ�function which yields the input function.

The approach outlined here brings advantages for the user, but it
also introduces the problem of dependencies between software
components. Page and Opper (1999) show that the decision
whether an arbitrary collection of software components meets
specified model requirements is NP-complete. To break down the
complexity of resolving such dependencies, reuse within CRUSDE is

restricted to software components of the same category as indicated
by rectangular boxes in Fig. 3. Categories form proper subsets of the
overall set of available software components. Therefore, the depen-
dencies of each software component are reduced to its own
category and the respective required functions must be implemen-
ted as these define the category. Furthermore, this restriction
greatly lowers the risk of mistakes on the user side by applying
functions for tasks they were not intended for. On the downside,
multiple implementations of identical functions in different cate-
gories could be a side effect and would ruin the overall idea of
reuse. However, the nature of each of the categories indicates
proper subsets of tasks that are very different from each other.
The intersection between these subsets should be the empty set,
which indicates minimal risk of redundant implementations.

4.2. Software architecture

Following the concept outlined above (Fig. 3), the requirements
on the software architecture are such that a user can (i) dynamically
select software components that participate in a simulation,
(ii) extend the framework independently with new software
components, and (iii) exchange software components and experi-
ment definitions with peers.

To fulfill these requirements, the data flow in Fig. 3 is trans-
ferred to the three layer structure in Fig. 4 which represents
CRUSDE's architecture. The software components from Fig. 3 are
included in the functional layer in Fig. 4 and implemented as plug-
ins (shared libraries that are dynamically loaded during runtime,
see Appendix B). All elements of the formal model (i.e., Eq. (4)) are
contained in this layer. They are, however, not directly connected.
Interface and management layer implement the data flow
between components of the functional layer and thus implement
the composable simulation model.

The central element of CRUSDE is the Simulation core, which
defines the management layer together with an Input handler, an
Experiment manager and a Plug-in manager. The Simulation core

Load
function

Post-
processors

Result
handler

Relaxation
function

X

1D
Convolution

2D Conv
operator

file system

(  R *xUt   = * *

Load history
function

Green’s
function

G L H  )t

3D Conv
operator

Operands

Operator

Fig. 3. Data flow (arrows) between important software components (boxes) of the proposed simulation framework. Since the framework is supposed to resemble the formal
model (Green's method) the gray dotted lines denote the analogy between terms of Eq. (4) and software components. Additional software components are added to increase
functionality and flexibility. Reflexive arrows refer to a software component that accesses functionality of another software component of the same category. The convolution
operator takes data from the Green's and load function. The latter might be affected by a load history depending on whether or not a time dependent load is to be simulated.
Once a convolution result for the examined area is calculated, one or more post-processors can be applied to the result. Finally, the results are passed to a result handler that
writes the modeling results in a particular format to the file system. The terms in brackets denote references to sections where the respective component is detailed.

1 “Black-box” is meant in the software sense, which means the calling function/
module does not have to care about the individual implementation details. The
user has to know these details to create a physically meaningful model or sensible
new components. CRUSDE makes all these details available in source code and
documentation.
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implements the main loop which specifies the sequence in which
plug-ins and management elements operate. Furthermore, the
Simulation core manages function calls invoked by plug-ins at
CRUSDE's provided-interface, the Framework API. The Simulation
core will route the call to the respective needed-interface which
calls the related required function the corresponding plug-in has
to implement.

The Input handler interprets the experiment definition (e.g.,
Listing 1), which specifies a simulation run in an Extensible
Markup Language (XML) file. Plug-ins participating in this simula-
tion, their parameter settings, and additional information such as
the coordinates of the region of interest as well as spatial and
temporal resolution are defined in this file. The Input handler
validates the experiment definition to a certain degree (i.e., ensure
the defined format is followed) and makes the contents accessible
to the Simulation core in an appropriate form (e.g., convert
parameter values from string literals to numbers).

The Experiment manager keeps a history of the individual
simulations run through CRUSDE. Metadata, such as parameter
settings, modeling result location, used plug-ins, user, time, and

date are stored in a database (XML) to allow a later matching of
modeling results to experiments or reconstruction of experiments.

The Plug-in manager has access to a plug-in repository (directory
hierarchy) and a plug-in database (XML). The plug-in repository is
the location in the file systemwhere the shared libraries are stored in
a controlled and organized way upon registration with CRUSDE.
Metadata must be provided by each plug-in (through special func-
tions, see Appendix A) such that it can be stored in an XML database
which is used to locate the respective binary when used for a
simulation. Values stored in the database are plug-in name, textual
description of its functionality, its category, required parameters,
requested plug-ins, and its location in the plug-in repository. This is
in accord with the demands of Overstreet et al. (2002) who identify
the capturing of objectives, assumptions, and constraints as a key to
reuse. However, before adding a plug-in to the system, the Plug-in
manager checks whether all the functions required for the specified
category are implemented and whether dependencies are fulfilled,
i.e., whether the required plug-ins are installed.

When the Simulation core retrieves the physical location of a plug-
in through the Plug-in manager, it creates instances of their needed-
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Fig. 4. Architecture of the proposed plug-in based simulation framework. The software components of Fig. 3 are represented by plug-ins of the functional layer. The logical
data flow depicted in Fig. 3 is realized by the interface and management layers which provide the infrastructure to support communication between the plug-ins. Input
handler, experiment manager, and plug-in manager provide additional functionality to implement the plug-in concept. The experiment definition contains the configuration
of a simulation.
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interfaces which are implemented through PluginIF or one of its
derived classes in the Interface layer. These objects bind the respective
shared libraries, which makes their functionality accessible to CRUSDE.
Fig. 4 shows in the Interface layer which interface binds instances of
which plug-in. The main difference in the individual nIF implementa-
tions is the parameterization of the ‘run’-function which defines the
core functionality of a plug-in. A load function plug-in, for instance,
implements the calculation of the point mass at a given location of the
modeled area in its ‘run’-function. It needs coordinates as parameters.
A post-processor, however, is simply told to work; without any
parameters, it requests its inputs through CRUSDE's API.

Functions that access plug-in metadata are inherited2 from the
PluginIF-interface. Loaded plug-ins use the Framework API to
request data from other plug-ins or allocate resources from CRUSDE.

The architecture of CrusDe must furthermore account for two
additional important features that are associated with the

Listing 1: Experiment Definition: Disk load with load history on an elastic half-space.

2 In object-oriented design an inheritance relation describes, here at the
example of interfaces, that an interface A that inherits interface B contains B (e.g.
all its functions) as a subset. Thus, at runtime instances of interface A can be
interpreted as both interface A and (with the limited functionality of B) interface B.

R. Grapenthin / Computers & Geosciences 62 (2014) 168–177 173



Author's personal copy

Simulation core in the Management layer (these features are not
included in Fig. 3 to limit its complexity):

� The functionality of a plug-in may depend on an unknown
number of parameters (defined by the plug-in) which get their
values for each simulation assigned in the experiment defini-
tion. Thus, a parameter registry is implemented and associated
with the Simulation core to provide a link between definition
and initialization of the parameters. Every plug-in can register
an arbitrary number of parameters. Before a simulation starts
the Input handler assures that the user provided all necessary
values and no parameters remain uninitialized in order to get
each plug-in to operate.

� A plug-in registry is implemented to allow individual plug-ins
to load and access the functionality provided by another plug-
in of its category.

For more detail, Grapenthin (2007) visualizes initialization
sequence, plug-in communication, and execution flow in the form
of UML sequence diagrams.

4.3. Job mechanism

A peculiarity in Fig. 3 are the ‘1…n’ boxes attached to the
LoadFunctionPluginIF and GreensFuncPluginIF interfaces.
This illustrates that these interfaces can hold multiple load func-
tions and Green's functions, respectively, which is a way to realize
the sum in Eq. (4). A ‘job’-mechanism enables the computation of
crustal responses defined by different Green's functions (see
Listing 2). Each term of the sum can be defined as a job within
the Green's function specification in the experiment definition.
The Simulation core will hand a list of jobs to the GreensFunc-

PluginIF-interface which manages the individual Green's func-
tions. Within its main loop the Simulation core keeps track of the
current job. The summation of the individual job results is realized
in the 3D convolution operator.

As the user is also allowed to specify multiple load functions in
the experiment definition, the LoadFunctionPluginIF manages
the respective load, load history, and decay functions.
It holds ‘1…n’ instances of the associated plug-ins (for load history
and crustal decay plug-in interfaces ‘0…n’ is valid as Eq. (4) and
therefore the experiment definition requires only a load to be

Listing 2: Abbreviated Experiment Definition: Showing the `job' mechanism that allows for superposition of multiple Green's functions (e.g., Pinel et al., 2007, Eq. (17))

R. Grapenthin / Computers & Geosciences 62 (2014) 168–177174
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defined). The Simulation core keeps track of the current load
component that is being worked with.

Crustal decay and Load histories can be defined for specific
‘jobs.’ However, as of now, a Load function definition can hold only
a single load history and one crustal decay definition. Those can be
linked to either a specific job or all jobs. Allowing for multiple load
history or crustal decay definitions within a single load function,
each linked to different jobs, may be included in future versions,
but this demands significant code changes.

5. Testing and validation: disk load

Maximum vertical and minimum (i.e., zero) horizontal displa-
cement are obtained under the center of a disk. An analytical
solution for the vertical displacement at this point derived from
Eq. (1) is given by Geirsson et al. (2006)

Uv;center ¼ 2ρhR0g
1�ν2

E
ð5Þ

where Uv;center is the vertical displacement under the center of a
disk, ρ is the density of the load, h is the load height, R0 is the
radius of the disk, g is the acceleration due to gravity, and ν and E
are, respectively, Poisson's ratio and Young's modulus.

Table 1 shows the results for a disk of height h¼150 m, radius
R0 ¼ 2 km, and density ρ¼ 1000 kg m�3 applied to an elastic half-
space with a Young's modulus of E¼10 GPa and a Poisson's ratio of
ν¼ 0:25. We compare CRUSDE's results to the analytical solution
and results of a similar simulation model that implements the
same load models and Green's functions for the elastic half-space,
but performs the convolution in the spatial rather than the
frequency domain (Grapenthin and Sigmundsson, 2006). The full
spatial solution from CRUSDE's run is given in Fig. 5.

CRUSDE misses the analytical solution by 2.2 mm in the vertical and
0.1 mm in the horizontal displacement. However, the differences in
Table 1 can be explained by machine precision, different techniques
for the convolution, and discretization of the model domain (for
details see Grapenthin and Sigmundsson, 2006, Table 5.1). Comparing
the displacements shown in Fig. 5a and b to the solution of Grapenthin
and Sigmundsson (2006) shows identical patterns. The horizontal
displacement is maximum in the area of the disk edge and vanishes
under its center because of the load symmetry and the uniform
layering of the model (Fig. 5e). Finally, conforming to Pinel et al. (2007)
the ratio between horizontal and vertical displacements does not
exceed 1=3 for an elastic half-space with ν¼ 0:25 (Fig. 5c and f,
Table 1).

We do not show results for simulations that utilize irregular loads
and a sinusoidal load history. However, these conform to results
obtained by Grapenthin et al. (2006). We also observe that with
increasing plate thickness the response of the thick plate model equals
the response of the elastic half-space as stated by Pinel et al. (2007).

6. Discussion

The implementation of a code like CRUSDE that enables reuse of
components and defines experiments removed from the actual
code base on a more abstract level clearly requires more effort on

Fig. 5. Response of an elastic half-space to a disk load. (A) Vertical displacement, (B) horizontal displacement, (C) ratio of horizontal and vertical displacements. (D–F) Same
as (A–C) but in a cross-section through y¼5000 m; the black rectangle shows the horizontal extent of the disk, vertical is not to scale. The Young's modulus and Poisson's
ratio of the half-space are set to 10 GPa and 0.25, respectively. The disks parameters are set to height h¼150 m, radius R0 ¼ 2 km, and density ρ¼ 1000 kg m�3. Its center is at
x¼5000 m and y¼5000 m.

Table 1
Comparison of CRUSDE's solution for the response under the center of a disc load to a
reference implementation and an analytical solution. The disk is characterized by
height h¼150 m, radius R0 ¼ 2 km, and density ρ¼ 1000 kg m�3 and its center is at
x¼ y¼ 5000 m. The elastic half-space has a Young's modulus of E¼10 GPa and a
Poisson's ratio of ν¼ 0:25. The grid size is 10�10 m for a 10 000�10 000 m region
of interest.

Analytical solution Reference
implementationa

CRUSDE's
solution

Uv;center (m) 0.5518b 0.5500 0.5496
jUh;center j (m) 0 0 0.0001
jUhj=Uz ≤1=3c ≤1=3 ≤1=3d

a See Grapenthin and Sigmundsson (2006).
b From Eq. (5).
c Note that this must be true for the whole modeled area, not just the center,

see Pinel et al. (2007).
d See Fig. 5.
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the developer side. This effort goes mainly into the definition of
interface and management layers to allow for data flow between
the individual components, as well as handling input (interpreta-
tion of experiment definition) and output. This is opposed to the
effort required by more straight-forward implementations, in
which code is produced for one particular model, likely with hard
coded parameter values. For the latter to work, a tremendous
bookkeeping effort is required to keep software versions and
modeling results synchronized, and results reproducible once
new models are to be tested or different parameter values need
to be checked. The approach introduced here, however, presents
one robust implementation of the core mechanism, i.e. convolu-
tion, that can be expanded as needed. This reduces the efforts of
everybody using the Green's function approach.

Tests with a disk load demonstrate that the infrastructure
works and CRUSDE produces results similar to the analytical
solution and the reference implementation. Results obtained by
Grapenthin et al. (2006) and Pinel et al. (2007) can be reproduced.
The diversity of applications for CRUSDE is reflected in previous
studies it has been successfully applied to, such as forecast of
subsidence due to a water reservoir (Ófeigsson et al., 2006),
removal of lava load signals from deformation data (Grapenthin
et al., 2010; Ófeigsson et al., 2011), and estimation of isostatic
adjustment due to a volcanic cluster (Grapenthin et al., in press).

A drawback of CRUSDE's current design is its reliance on metric
measurements for distances on the grid. This results in issues with
Green's functions for a spherical Earth (e.g., Farrell, 1972), which
usually give distances in degrees, and it limits the ability to reuse
existing code. Agnew (2012) for example provides an implemen-
tation of spherical Earth Green's functions (Farrell, 1972). Reusing
their code with minimal changes is not possible unless a transla-
tion from metric distances to degrees was performed. This results
in unnecessary complexity at any time degree based operations
are required. A future version of CRUSDE will include this in the
Simulation handler.

The currently provided Green's functions also are not necessa-
rily implemented in the computationally most efficient way. We
use analytic expressions which means that the Green's function is
calculated for each model run. A more efficient way would be to
use pre-computed lookup tables (e.g., Farrell, 1972) and interpolate
between values. Given CRUSDE's architecture, this would be
straightforward to do as it only requires to generate the tables
and write a new plug-in that reads the Green's function from a
given file. Future versions may include this.

Lastly, CRUSDE is setup such that results are given for only one
level of depth (current Green's functions give displacement at the
surface only). If Green's functions that give output for multiple
depth levels are used, they should be parameterized such that the
depth level can be set in the experiment definition. A wrapper
script that generates experiment definitions with different depth
values and calls CRUSDE multiple times would be straightforward to
implement.

7. Conclusions and outlook

This paper provides a blueprint showing how to set up niche
scientific tools to enable software reusability. Ultimately, this
opens ways towards community tools rather than a collection of
redundant, case-based binaries.

We derived a generalized load response function (Eq. 4) that
includes load history, crustal relaxation, Earth model and load
model functions. This is implemented in a plug-in based simula-
tion framework (implemented and tested in C/C++ on Linux
platforms) which enables users to switch simulation components
based on XML definitions without duplicating large parts of the

code base. CRUSDE comes with a range of plug-ins ready to be used
for simulations of surface displacements Appendix B in supple-
mentary data. The current Green's functions give surface displace-
ments for the elastic, final relaxed, pure thick plate response of a
flat Earth to surface load changes. These can be combined to
express the exponential decay from elastic to final relaxed
response, and displacement rates (see Pinel et al., 2007) due to
one or multiple disks, or irregular loads, or a combination of these.
Each of these load functions can have its own load history and
crustal decay functions. Expansions to this or simplifications (pre-
computing Green's functions and interpolation of look-up tables)
are straightforward to add to the tool as new plug-ins. The code
has been tested against analytical solutions for disk loads and
results that were obtained from independent implementations of
the same Green's functions.

Future work on CRUSDE will focus on direct support of spherical
Earth models as well as the integration of additional Green's
functions. Following this, an interface to ALMA (Spada, 2008) is
planned, which will enable the derivation of Green's functions
from layered Earth models through the summation of Love
numbers (e.g., Farrell, 1972).
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