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Abstract Geodetic earthquake early warning (EEW) algorithms complement point-source seismic
systems by estimating fault-finiteness and unsaturated moment magnitude for the largest, most damaging
earthquakes. Because such earthquakes are rare, it has been difficult to demonstrate that geodetic
warnings improve ground motion estimation significantly. Here, we quantify and compare timeliness and
accuracy of magnitude and ground motion estimates in simulated real time from seismic and geodetic
observations for a suite of globally distributed, large earthquakes. Magnitude solutions saturate for the
seismic EEW algorithm (we use ElarmS) while the ElarmS-triggered Geodetic Alarm System (G-larmS)
reduces the error even for its first solutions. Shaking intensity (Modified Mercalli Intensity, MMI) time series
calculated for each station and each event are assessed based on MMI threshold crossings, allowing us to
accurately characterize warning times per station. We classify alerts and find that MMI 4 thresholds result in
true positive alerts for only 13.7% of sites exceeding MMI 4 with a median warning time of 18.9 s for ElarmsS,
while G-larmsS issues true positive alerts for 52.3% of all sites exceeding MMI 4 with a significantly longer
median warning time of 55.8 s. The geodetic EEW system reduces the number of missed alerts for a
threshold of MMI 4 from 48.7% to 19.2% for all sites, but also increases the number of false positive alerts
from 1.2% to 13.4% of all sites. By quantifying increased accuracy in magnitude, ground motion estimation,
and alert timeliness, we demonstrate that finite-fault geodetic algorithms add significant value, including
better cost savings performance, to point-source seismic EEW systems for large earthquakes.

1. Introduction

The concept underpinning earthquake early warning (EEW) is to detect and characterize earthquakes as
soon as possible after they initiate in order to warn ahead of the arrival of strong ground shaking (Allen,
Gasparini, et al., 2009). Ideally, EEW should be a ground motion (GM) warning system as it is knowledge
of the expected intensity of shaking that is most important to a user. In fact, that user's actions often depend
on the level of GM expected at their site. The United States’ ShakeAlert EEW system currently uses
earthquake source parameters in combination with a GM model to provide warnings. Therefore, the success
of the EEW system depends on accurate earthquake source characteristics (origin time, location, magnitude,
and fault-finiteness) in order for the GM estimates themselves to be accurate. Here, we use data from 32 large
(M > 6) globally distributed earthquakes to evaluate the accuracy and timeliness of earthquake magnitude
and GM estimates when comparing seismic and geodetic EEW systems. We find that for large earthquakes
the performance is much improved when including information from geodetic algorithms.

Traditionally, EEW systems use features of elastic waves recorded on inertial seismometers to estimate the
magnitude and epicenter of an earthquake (Allen, Gasparini, et al., 2009). The ShakeAlert system's
Earthquake Point-source Integrated Code (EPIC), for example, uses the amplitude of the first few seconds
of the P wave arrival on several seismic stations to estimate source parameters (Chung et al., 2017). It has
been noted that this approach leads to saturation, an underestimation of the magnitudes of large events
(e.g., Hoshiba & Ozaki, 2014). This is due to saturation of accelerations at higher frequencies in the
epicentral region of an earthquake, that is, very strong shaking. When integrating acceleration records to
obtain displacement, errors are introduced because of this instrumental saturation. Inertial sensors, which
are used by EEW algorithms, therefore provide unreliable measurement of very-low-frequency
displacements (Boore & Bommer, 2005; Melgar et al., 2013). Meier et al. (2016) found that the first few
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seconds of the P wave, as recorded by inertial sensors, do not contain enough information to forecast growth
of the earthquake into a very large M8+ event. For example, during the 2011 M,,9.0 Tohoku-Oki, Japan,
earthquake, first and final alerts issued 8.6 and 116.8 s after origin time underestimated the final magnitude
by 1.8 and 0.9 magnitude units, respectively (Hoshiba et al., 2011). This saturation resulted in underesti-
mated GMs in the greater Tokyo area and timely, but severely underestimated, tsunami warnings—includ-
ing amplitudes and geographic extent (Hoshiba & Ozaki, 2014).

Blewitt et al. (2006) first proposed using geodetic measurements to overcome magnitude saturation after
severe underestimation of the 2004 M,,9.3 Sumatra earthquake by long-period seismic observations within
the first hour after the event. Based on this principle, instead of traditional seismic data (velocity and accel-
eration), geodetic EEW algorithms use observations collected by Global Navigation Satellite Systems
(GNSS). GNSS can be conceptualized as strong-motion displacement sensors capable of measurement at
the longest periods down to the static or permanent offset at 0 Hz (Melgar et al., 2013). Since the 2004
Sumatra earthquake and tsunami, many GNSS-based techniques have been developed and improved to esti-
mate source properties for earthquake and tsunami early warning in real time (e.g., Allen & Ziv, 2011;
Colombelli et al., 2013; Crowell et al., 2016; Grapenthin et al., 2014a, 2014b; Grapenthin & Freymueller,
2011; Kawamoto et al., 2017; Minson et al., 2014); a history of geodetic early warning methods and their
development can be found in Bock and Melgar (2016).

Seismic systems, as compared to geodetic, are also more limited by network configuration as they require
good azimuthal coverage and dense station spacing. Out-of-network and edge-of-network events, that is,
those with poor azimuthal coverage, are often severely mischaracterized both in location and magnitude.
This limitation is demonstrated by the performance of seismic point-source (e.g., ElarmS, Allen, Brown,
et al., 2009) and seismic finite-fault algorithms (e.g., FinDer, Bose et al., 2012) during replays of the out-
of-network M,,7.2 El Mayor-Cucapah event occurring south of the United States-Mexico border. When
replaying the earthquake using only the stations operating in real time within the United States in 2010, both
ElarmS and FinDer resulted in severe event mislocation and magnitude underestimation (Ruhl et al., 2017).
Geodetic systems, however, successfully characterized the El Mayor-Cucapah event using a similar (United
States-only) network geometry (Allen & Ziv, 2011; Grapenthin et al., 2014a; Ruhl et al., 2017) and have been
shown to contribute to alarms in sparse seismic networks through S wave detections (Grapenthin et al.,
2017). With the addition of near-source stations, seismic-finite-source algorithms like FinDer are better able
to model the 2010 M, 7.2 El Mayor earthquake (Bose et al., 2015). Using asymmetrical GM templates, FinDer
is also now able to model offshore subduction zone events. For the magnitude of the 2011 M,9.0 Tohoku-oki
earthquake FinDer predicted M,,8.5 240 s after origin time (Bose et al., 2015). Recent FinDer results on mod-
erate magnitude events (e.g., for the 2016 M, 7.0 Kumamoto earthquake) are encouraging as well (Bose et al.,
2018), and future comparisons between seismic and geodetic finite-fault algorithms are important.

Chung et al. (2017) presented EEW results for recent earthquakes using two versions of ElarmS (E2 and E3).
While the number of missed and false events is substantially reduced in E3, both versions demonstrate that
missed and false events are primarily those which originate outside of network boundaries (e.g., offshore) or
in sparse network areas (e.g., eastern Oregon and Washington). Similarly, during replays of a simulated
M,,8.7 megathrust earthquake on the offshore Cascadia subduction zone, ElarmsS first locates the event off-
shore with an initial magnitude of ~8 before relocating it to within the network and lowering the magnitude
to ~7. Geodetic finite-fault results for this simulation as well as the El Mayor-Cucapah event are more robust
in this regard and demonstrate its ability to accurately estimate magnitudes of offshore, out-of-network
events based on the first alerts produced from the seismic algorithm (Ruhl et al., 2017). It is worth noting that
in the western United States several M > 7 earthquake hazards exist near the edges of and beyond the foot-
print of the real-time EEW seismic network; for example, in the Cascadia subduction zone to the west, on
crustal faults in the Basin and Range and Walker Lane to the east, and to the south and north of the contig-
uous United States. To provide a true west-coast-wide system, we must extend the seismic network beyond
the footprint of interest or include geodetic data to ameliorate some of the issues with limited
network configurations.

To provide coverage for the full range of damaging earthquakes (M6+) in the United States, several groups
have developed EEW algorithms that make use of GNSS data. Three of these are currently being tested for
implementation into ShakeAlert: G-larmS, BEFORES, and G-FAST (Crowell et al., 2016; Grapenthin et al.,
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2014a; Minson et al., 2014). In this work, we will focus on performance of the G-larmS algorithm (see Murray
et al., 2018, for a comparison) and make the data freely available so that other algorithm developers can
conduct similar evaluations. The Geodetic Alarm System (G-larmS) was the first operational real-time
geodetic system in the United States (Grapenthin et al., 2014a), and has been running in real time since
the beginning of May 2014. G-larmS analyzes GNSS position time series in real time, determines static off-
sets, and performs a least-squares inversion for slip using a priori fault geometries determined by the initial
event location and magnitude provided by the ShakeAlert seismic algorithms (Colombelli et al., 2013). Fault
configuration files are specific to each region, see section 3.2 for details.

G-larmS operates as a triggered system and is coupled to the seismic point-source algorithms of ShakeAlert.
Thus, our goal is to conduct end-to-end tests of the seismic only and the coupled seismic and geodetic sys-
tems with real data. We use a suite of large (M > 6) earthquakes worldwide for which we have waveforms
from both seismic and geodetic sites to test both the seismic (ElarmS) and geodetic systems (G-larmS). We
quantify the timeliness and accuracy of seismic and geodetic magnitude and GM EEW alerts. We then show
that the additional information and accuracy achieved by using available real-time GNSS data has substan-
tial added value and that geodesy has an important role to play in providing warnings for the largest, most
damaging earthquakes and their associated hazards.

2. Data

We test the EEW algorithms using 32 earthquakes from around the world ranging in magnitude from M6.0
(2004 Parkfield) to M,9.0 (2011 Tohoku-oki) and with variable quantity and quality of seismic and geodetic
data (Table 1). The database is dominated by subduction zone megathrust events but includes continental
strike-slip (e.g., 2016 M,,7.0 Kumamoto), intraplate normal (e.g., 2017 M,,8.2 Tehuantepec), and other non-
subduction zone events (e.g., 2015 M,,7.8 Nepal). The number of stations of each data type vary from a few to
hundreds; both seismic and geodetic records (either real or synthetic) exist for 29 of the 32 earthquakes. We
do not have seismic data for the 2010 M,,7.7 Mentawai earthquake, the 2014 M, 7.7 Iquique, Chile, after-
shock, or the 2015 M, 7.3 Nepal aftershock, for completeness we include these events as part of the geodetic
analysis. The M,,8.7 “Cascadia001300” and M,,7.0 “Hayward4Hz” earthquakes are simulations of scenario
events for which we have synthetic seismic and geodetic data (Melgar et al., 2016; Rodgers et al., 2018). For
the M,,6.9 Nisqually 2001 event we have actual recorded seismic data as well as synthetic GNSS data from a
slip inversion (Crowell et al., 2016). In the following two sections, we discuss the details of seismic and geo-
detic data used in this study.

2.1. Seismic Data

Seismic data were collected from various sources for a total of 29 out of 32 earthquakes. The 2014 M,,7.7
Iquique, Chile, aftershock and the 2015 M,,7.3 Nepal aftershock do not have seismic data and we were
unable to include seismic data from the 2010 M,,7.7 Mentawai, Indonesia, earthquake. We format the data
into miniseed format in SI units (cm/s or cm/s/s) and create channel files specifying, among other things, the
units, sample rates, and gains of each channel. Using the accompanying channel files, all waveforms for each
event are combined and rewritten into one or more Earthworm tank-player files to be used for real-
time replays.

For the 2001 M,,6.9 Nisqually, 2004 M,,6.0 Parkfield, 2010 M,,7.2 El Mayor-Cucapah, and 2014 M,6.1 Napa
earthquakes, we downloaded acceleration and velocity waveforms in miniseed format along with channel
files directly from the official ShakeAlert test suite (Cochran et al., 2017). For each of these, waveforms begin
2 min prior to origin time and are a total of 7 min long. Sampling rates range from 40 to 200 samples per sec-
ond (sps), depending on the instrument type.

Two events have only synthetic seismic data. The My38.7 Cascadia001300 event is a simulated megathrust
earthquake on the Cascadia Subduction zone offshore of Oregon, Washington, and California (Ruhl et al.,
2017). Acceleration waveforms (50 sps) begin 1 min prior to origin time and are a total of 8.66 min long.
The M,,7.0 Hayward4Hz earthquake is a simulated strike-slip rupture initiating on the downdip extent of
the Hayward fault in Northern California (Rodgers et al., 2018). Velocity waveforms sampled at 40 sps
and with frequencies up to 4 Hz were obtained from Rodgers et al. (2018); each begins 2.0 s before origin time
and has a total duration of approximately 1.5 min.
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Table 1
List of Earthquakes and Their Source Parameters Used in This Study
Origin time Number of Number of
Event name, country (uTCc)?* Longitude Latitude z(km) Mw geodetic sites seismic sites Mechanism
1  Tohoku2011, Japan 2011-03-11T05:46:24 142.3720 38.2970  30.0 9.0 815 (288) 211 Reverse
2 Maule2010, Chile 2010-02-27T06:34:14  —72.7330 —35.9090  35.0 8.8 27 7 Reverse
3 Cascadia001300, United States (Synthetic) 2016-09-07T07:00:00 —124.6160 45.8638 19.8 8.7 62 40 Reverse
4 Illapel2015, Chile 2015-09-16T22:54:33  —71.6540 —31.5700  29.0 8.3 58 40 Reverse
5  Tokachi2003, Japan 2003-09-25T19:50:06 143.9040 41.7750  27.0 8.3 368 (189) 313 Reverse
6 Tehuantepec2017, Mexico 2017-09-08T04:49:19 —93.8990 15.0220 474 8.2 7 88 Normal
7  Iquique2014, Chile 2014-04-01T23:46:47  —70.7690 —19.6100  25.0 8.1 40 55 Reverse
8 Ecuador2016, Ecuador 2016-04-16T23:58:36 —79.9220 0.3820 20.6 7.8 21 21 Reverse
9  Kaikoura2016, New Zealand 2016-11-13T11:02:56 173.0540 —42.7370 15.0 7.8 39 34 Strike-slip
10 Nepal2015, Nepal 2015-04-25T06:11:25 84.7310 28.2310 8.2 7.8 7 4 Reverse
11 Ibaraki2011, Japan 2011-03-11T06:15:34 141.2653 36.1083  43.2 7.7 1,149 (432) 278 Reverse
12 Iquique_aftershock2014, Chile 2014-04-03T02:43:13  —70.4930 —20.5710 224 7.7 17 0 Reverse
13 Mentawai2010, Indonesia 2010-10-25T14:42:22 100.1140 —3.4840 20.0 7.7 13 0 Reverse
14 N.Honshu2011, Japan 2011-03-11T06:25:44 144.8940 37.8367  34.0 7.7 1,148 (230) 387 Normal
15 Melinka2016, Chile 2016-12-25T14:22:26  —74.3910 —43.5170  30.0 7.6 58 12 Reverse
16 Nicoya2012, Costa Rica 2012-09-05T14:42:08  —85.3050 10.0860  40.0 7.6 9 14 Reverse
17 Iwate2011, Japan 2011-03-11T06:08:53 142.7815 39.8390 31.7 7.4 1,149 (338) 216 Reverse
18 Miyagi2011A, Japan 2011-03-09T02:45:12 143.2798 38.3285 8.3 7.3 892 (263) 294 Reverse
19 N.Honshu2012, Japan 2012-12-07T08:18:20 144.3153 37.8158  46.0 7.3 978 (196) 430 Reverse
20 Nepal_aftershock2015, Nepal 2015-05-12T07:05:19 86.0660 27.8090 15.0 7.3 5 0 Reverse
21 ElMayor2010, Mexico 2010-04-04T22:40:42 —115.2800 32.2590 10.0 7.2 137 465 Strike-slip
22 Miyagi2011B, Japan 2011-04-07T14:32:43 141.9237 38.2028  60.7 7.1 1,137 (381) 386 Reverse
23 N.Honshu2013, Japan 2013-10-25T17:10:18 144.5687 37.1963  56.0 7.1 59 (59) 349 Reverse
24 Puebla2017, Mexico 2017-09-19T18:14:38  —98.4890 18.5500  48.0 7.1 18 79 Normal
25 Hayward4Hz, United States (Synthetic) 2017-01-01T00:00:02 —122.2850 37.9638 17.1 7.0 2,301 (231) 2301 Strike-slip
26 Kumamoto2016, Japan 2016-04-15T16:25:05 130.7630 32.7545 125 7.0 277 (245) 230 Strike-slip
27 Aegean2014, Greece 2014-05-24T09:25:02 25.3890 40.2890 12.0 6.9 6 139 Strike-slip
28 Nisqually2001, United States 2001-02-28T18:54:32 —122.7270 47.1490 51.8 6.9 26 63 Normal
(Synthetic Disp.)
29 E.Fukushima2011, Japan 2011-04-11T08:16:12 140.6727 36.9457 6.4 6.6 1,146 (476) 260 Normal
30 Lefkada2015, Greece 2015-11-17T07:10:07 20.6002 38.6650 10.7 6.5 23 4 Strike-slip
31 Napa2014, United States 2014-08-24T10:20:44 —122.3100 38.2150 11.0 6.1 224 (222) 560 Strike-slip
32 Parkfield2004, United States 2004-09-28T17:15:24 —120.3700 35.8150 7.9 6.0 13 309 Strike-slip

#Dates are formatted as year-month-day.

The remaining events are downloaded or obtained from local earthquake authorities in each country of ori-
gin (see Acknowledgments). Waveform lengths and sampling rates vary on a station-by-station and network-
by-network basis; some are triggered stations that begin after the P wave. We did not apply a strict distance or
GM amplitude cutoff beyond which we no longer consider records. In many cases, we collected all available
seismic data associated with an event. For Japanese events, with significantly more stations recording each
event, we use up to ~400 stations per event starting with the highest GMs based on the stations associated
with each event. In total, we use 7,589 three-component seismic records for the ElarmS analysis.

2.2. Geodetic Data

The geodetic data set consists of high-rate GNSS observations for 29 real earthquakes worldwide from the
open data set of Melgar and Ruhl (2018). The displacement waveforms were calculated in a uniform fashion
using the precise point positioning approach of Geng et al. (2013). The overwhelming majority of the record-
ings are collected at 1 sps but a few (2010 My,7.2 El Mayor-Cucapah, 2012 M,,7.6 Nicoya, 2014 M,,6.1 Napa,
and 2015 M,,7.8 Nepal) have some 5 sps recordings. These data were resampled to 1 sps for use with G-larmS
which currently processes data by the integer-epoch. The data were processed into 6-hr-per-channel text files
to mimic the real-time trackRT format previously used at the Berkeley Seismological Laboratory.

We also use synthetic displacement data for three additional earthquakes. The M,,7.0 Hayward4Hz displa-
cement data were created by integrating the seismic data simulated in Rodgers et al. (2018) and described in
section 2.1. The Cascadia001300 synthetic data were developed using a hybrid semistochastic approach

RUHL ET AL.

3822



nnnnnnnnnnnnnn
'AND SPACE SCiENCE

Journal of Geophysical Research: Solid Earth 10.1029/2018JB016935

developed by Melgar et al. (2016) and described in Ruhl et al. (2017). The Nisqually 2001 earthquake is a real
event in Washington state that was recorded seismically, but displacements were simulated by Crowell et al.
(2016). For these events, data from multiple stations are rewritten into one time-ordered horizontal and one
vertical component text file per event. In total, we use 4,545 three-component geodetic records for the G-
larmS analyses.

3. Methods

First, we replay seismic data from each earthquake through the ElarmS EEW algorithm in simulated real
time to estimate event magnitudes, epicentral locations, and origin times. We then use the seismic first-
alerts, as well as “perfect” alerts (i.e., true origin time and location), to trigger the Geodetic Alarm System
(G-larmS) and generate distributed slip and magnitude evolution time series. Using those results, we predict
shaking intensity (Modified Mercalli Intensity, MMI) time series for each seismic station for each event to
compare to the observations. Finally, we employ an MMI threshold approach (Meier, 2017) to accurately
characterize warning times (WTs) on a per station basis, thus enabling classification of true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) alerts for each event. Below we discuss the
details of ElarmS (section 3.1), G-larmS (section 3.2), and the MMI threshold method used for classifying
our simulated real-time alerts (section 3.3).

3.1. Seismic Alerts: ElarmS

ShakeAlert's seismic point-source algorithm (EPIC) is a derivative of the Earthquake Alarm System
(ElarmS), a network-based EEW algorithm developed at the Berkeley Seismological Laboratory over the last
10 years (Allen, Gasparini, et al., 2009; Kuyuk et al., 2013). Because there are only minor functional differ-
ences between EPIC and ElarmS, we test our data set using the latest version of ElarmS currently operating
at the Berkeley Seismological Laboratory (Chung et al., 2017). ElarmS identifies and associates triggers and
locates events epicentrally assuming a fixed depth or set of depths (8 and 20 km used in this study). Next, the
algorithm estimates event magnitudes based on P wave amplitudes and distances to its estimated epicenter.
ElarmS then generates earthquake alerts when a minimum of three stations with at least 0.2 s of data meet
region-specific spatial constraints (e.g., station density is taken into consideration).

We create earthquake tank-player files and channel files containing all data for each earthquake and run
them through ElarmsS in simulated real time. When ElarmsS identifies an event, it outputs estimates of origin
time, magnitude, and location, as well as solution information such as number of stations. As additional sta-
tions trigger and seismic data develop, ElarmS refines and adjusts its source parameters and issues updated
alerts. We retain a list of alert parameters in a separate log file for each event.

3.2. Geodetic Alerts: G-larmS

The Geodetic Alarm System (G-larmS) incorporates real-time GNSS data into EEW systems (Grapenthin
et al., 2014a). In real time operation, G-larmS continuously analyzes positioning time series and is capable
of ingesting both relative displacements (baselines) and absolute positions from precise-point-positioning
solutions. During an earthquake, the ShakeAlert seismic system issues event messages containing hypocen-
ter and origin time that trigger G-larmS to estimate static offsets epoch-by-epoch at each site.
Simultaneously, it inverts these static offsets for distributed slip on a finite-fault. The latest version of G-
larmS builds a linear fault using region-specific a priori geometries and, in addition, attempts to fit the event
by imposing slip onto nearby known faults, allowing for complex geometries. In the first case, G-larmS cen-
ters the model fault plane on the earthquake hypocenter provided by ShakeAlert and allows the fault to grow
symmetrically based on scaling relationships (Wells & Coppersmith, 1994). Model fault plane orientations
are predefined for expected tectonic regimes based on location and Green's functions are calculated in real
time. This means that, for instance, for an event in the San Francisco Bay Area, it will be modeled using lin-
ear San Andreas fault (SAF) parallel, SAF conjugate, and SAF splay (+5° from SAF) geometries. For the lat-
ter case, so-called “catalog faults” are built into the system by simplifying models of large faults (e.g.,
UCERFS3, Field et al., 2014; Slab1.0, Hayes et al., 2012). Therefore, for the San Francisco Bay Area example,
an event in Oakland, CA, is modeled with slip imposed onto the San Andreas and Hayward faults (sepa-
rately) as well as on the growing, linear regional geometries. One benefit of using catalog faults is that
Green's functions can be precomputed for fixed station sets saving computation time during inversion.
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Another benefit is that curving faults such as megathrusts or complex strike-slip faults (e.g., big bend of SAF)
can be modeled more accurately than with the linear tectonic regime faults. At each epoch, the geometry
that minimizes the model misfit to the data is selected as the preferred solution. A detailed description of
the original algorithm can be found in Grapenthin et al. (2014a, 2014b) and previous performance with syn-
thetics offshore Cascadia can be found in Ruhl et al. (2017).

In both replay (real events) and simulation mode (synthetic events), G-larmS is run in two separate steps,
rather than simultaneously estimating offsets and finite-fault parameters as in the real-time system. The first
module is the Offset Estimator (OE), which calculates and stores the coseismic (static) offsets, and the sec-
ond is the Parameter Estimator (PE) that actually inverts the offsets for slip on a finite fault. This separation
is more efficient in an offline, personal computer-based implementation. We run both the OE and PE twice:
once using ShakeAlert XML messages created from the seismic first alert to trigger G-larmS (described in
section 3.2.1), and then again using messages containing the exact hypocenter and origin time as a perfect
alert to trigger G-larmS (section 3.2.2).

The G-larmS OE uses the ShakeAlert style XML event message to determine a start time for offset estimation
at each station within a specific radius based on the event location, magnitude, origin time, and a configur-
able wave speed. Because static offsets typically arrive with the S wave, choosing a shear-wave velocity
(~3 km/s) is often the preferred or recommended approach. However, a comparison of finite-fault solutions
based on offset estimations started at estimated P wave and S wave arrival, respectively, showed that starting
the offset estimation earlier resulted in damping of early offsets and, therefore, damping of the finite-fault
solutions (Ruhl et al., 2017). This is acceptable since near- and intermediate-field oscillating dynamic displa-
cements can sometimes inflate initial static displacement (i.e., offset) estimates. Also, using a faster velocity
can account for error in origin times and locations (i.e., prevent missing initial offsets) and may be more
representative of average crustal velocities for deeper events. In this paper, we use a velocity of 5.2 km/s
for all events, regardless of location or tectonic setting. G-larmS then calculates and stores the mean displa-
cement amplitude before the calculated start time. These are subtracted from average displacements follow-
ing the start time to estimate static offsets.

For the real earthquakes, we reformat the data into 6-hr GPS time series for each station-component and
store them in text files in GPS time units (i.e., without leap second adjustments). These are ingested in
batches by the OE in faster-than-real-time replays and offsets are written to additional log files to be ingested
later by the PE. For the simulated displacement data sets, we store horizontal displacement data for all sta-
tions in one time-ordered text file and vertical displacements in another. Random noise (+2.5 and +4.0 cm
for horizontal and vertical components, respectively) is added to the displacements as they are read and off-
sets are estimated and written into individual log files. Once all offsets are calculated, the PE reads the offset
logs and begins the slip inversion in real time based on the ShakeAlert XML message and the region-specific
fault configurations.

G-larmsS calculates earthquake magnitudes at each epoch based on the overall fault geometry and amount of
slip imposed on it. Outputs include subfault geometries and the magnitudes of strike-slip and dip-slip com-
ponents of slip per subfault. We simplify this information by calculating a surface-projected perimeter
around the subfault patches that have slip greater than 10% of the maximum slip; we ensure this perimeter
includes the hypocenter, even if it is located on a subfault that has less than 10% of the maximum subfault
slip amount. This value (10% of maximum slip) was determined empirically by Ruhl et al. (2017) using 1,300
synthetic earthquakes in the Cascadia subduction zone. The perimeter is used to calculate the closest epicen-
tral distance, Ry, to the fault necessary for GM prediction. The actual subfault patches within this perimeter
are then used to calculate Rgyp, the closest hypocentral distance to the fault rupture itself. We then calculate
the dominant rake of the overall fault based on the amount of strike-slip and dip-slip and characterize the
solution as a rectangular fault with pure and uniform reverse (90), normal (—90), dextral (—180), or sinistral
(180) slip. This information is used for GM prediction (see section 3.3).

3.2.1. ElarmS-Triggered G-larmS

For a true real-time comparison, we first trigger G-larmS using the ElarmS first alerts. These are referred
throughout the text and in figures as “ElarmS-Triggered G-larmS” solutions. We use the magnitude, epicen-
tral location, and origin time of the first ElarmS solution to build the XML event messages for each event;
depths are fixed to either 8 or 20 km, depending on the first alert. G-larmS replays always begin at the
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origin time, therefore solutions are calculated for each epoch as soon as the estimated P wave reaches the
closest GNSS station. Because geodetic sites may be closer than seismic sites, this may result in unrealisti-
cally timed solutions (i.e., before the ElarmS solution exists). Therefore, we remove all solutions before
the ElarmsS first alert plus one epoch.

3.2.2. Perfectly Triggered G-larmS

In addition, we calculate perfect G-larmsS solutions assuming that we know exactly where each earthquake
occurs at exactly the origin time. These are referred throughout the text and figures as “Perfectly Triggered
G-larmS” solutions. We use M6.0 for the initial magnitude of each event as well as the exact depth as
reported in the published catalog locations (Table 1). We employ this approach to assess how much the
simulated real-time environment degrades a perfect solution. For discussion of these results, please see
the supporting information.

3.3. Real-Time Alert Classification: MMI Threshold Approach

EEW is inherently a GM warning system because users' actions depend on the level of shaking intensity
expected at their individual sites, rather than on the magnitude or location of the earthquake. Because most
algorithms provide the latter information without GM estimates, it is difficult to assess an EEW system based
on source parameters alone. Instead, Meier (2017) suggested to develop quantitative metrics, such as WT,
and to classify alerts using shaking intensity thresholds on a per station basis. We follow that approach
and assess our results with respect to GM in addition to comparing magnitude estimates.

First, we process the observed data by converting each seismic waveform to envelopes of peak ground accel-
eration (PGA) and peak ground velocity (PGV). We combine the individual components into one PGA and
one PGV envelope by taking the maximum of the three components. We then use both PGA and PGV to con-
vert the data to observed maximum instrumental MMI time series using the method of Worden et al. (2012).
A total of 5,151 sites associated with ElarmS-alerted events are used.

Next, we compute predicted PGA and PGV for each station from the ElarmS, ElarmS-Triggered G-larmS, and
Perfectly Triggered G-larmS solution time series at each epoch. For all three solution types and for all global
earthquakes in our study, we use the GM prediction equations of Abrahamson et al. (ASK14, 2014). For both
G-larmS and ElarmS we use the same site-specific V530 value extracted from a slope-based global database
from the USGS (Wald & Allen, 2007). We use dip and rake angles simplified from the G-larmsS finite-fault
solutions based on the average rake of the subfaults. The dips are 15°, 90°, 90°, and 60° for any fault with pri-
marily reverse dip-slip, normal dip-slip, sinistral strike-slip, and dextral strike-slip, respectively. The simpli-
fied rakes are 90°, 180°, —180°, and —90° for each fault type, respectively. The GM estimates are controlled by
varying only three input parameters: each algorithm uses its own M, estimate per-epoch, site-specific dis-
tance metric Ryp, and fault width W. R;p is the closest horizontal distance to the surface projection of the rup-
ture (G-larmS) or point-source location (Elarms). For the G-larmsS solutions, we calculate Rjg and Rg,, using
the finite-fault described in section 3.2. We then calculate width W for all solutions based on M, estimates
and the tectonic regime inferred from the simplified rakes using empirical relationships from Wells and
Coppersmith (1994). All other parameters are held constant for GM predictions calculated for all
three algorithms.

We calculate and store predicted PGA and PGV values as time series based on the solutions that update each
epoch. Predicted PGA and PGV are then converted and combined into a maximum-MMI envelope time ser-
ies in the same manner as the observations. We compare the observed and predicted MMI time series with
respect to a specific MMI alerting threshold on a per station basis at all the available seismic sites for any
given event. If both the observations and predictions exceed the specified MMI threshold, the WT is defined
as the time difference between the observed threshold crossing and the time at which the threshold crossing
was first predicted. For instance, long WTs indicate that the prediction came well before the site experienced
shaking equivalent to the MMI threshold. A short WT, on the other hand, means that MMI threshold-
exceeding shaking follows quickly after its prediction. If the WT is negative, the threshold-crossing GM alert
was issued after actual GM already exceeded the threshold. Only alerts with positive WTs are considered TP
alerts. Late warnings (negative WTs) are classified as FNs or missed alerts. We calculate median WTs for all
TP sites, as well as for all sites alerted, even if late (Table S3). If neither the observations nor predictions cross
the threshold, no WT is calculated, no alert is issued, and it is classified as a TN end-user experience. If the
observation crosses the threshold, but the prediction does not, no WT is calculated and it is classified as a FN
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Figure 1. Magnitude estimate evolutions for six earthquakes used as examples throughout this paper. The magnitude of
the examples increases from the top left to the bottom right and includes the (a) 2015 My,6.5 Lefkada, (b) 2017 My,7.1
Puebla, (c) 2012 My,7.6 Nicoya, (d) 2011 My,7.7 Ibaraki, (e) 2015 M,,8.3 Illapel, and (f) 2011 M,;9.0 Tohoku earthquakes.
In each panel, the black curve is the USGS Moment-rate function derived from finite-fault source inversion or a
triangle set to the width of twice the half-duration from moment tensors solutions published by the USGS. Green curves
are the corresponding moment magnitude evolution for the black STF curves. Blue curves are from Elarms§, red curves
are from ElarmS-triggered G-larmS solutions, and magenta curves are for Perfectly Triggered G-larmsS solutions. The
dashed gray line shows the final Mw.

along with the late alerts. And finally, if the prediction crosses the threshold, but the observations do not, no
WT is calculated and it is classified as a FP. Classifying alerts into these four categories allows quantification
of the performance of an EEW system in GM space (Meier, 2017; Minson et al., 2019). We repeat the MMI
threshold calculations for all seismic station sites for all events using the ElarmS, ElarmS-Triggered G-
larmS, and Perfectly Triggered G-larmsS solutions for thresholds from MMI 3 to 7.

We do not include Hayward4Hz in the MMI analysis because it has >2,000 stations only at very close dis-
tances and would dominate the results. The Cascadia001300 data, on the other hand, includes only 40 seis-
mic sites over a range of distances and their influence on statistics is therefore more representative of
real observations.

It is worth noting that aside from transmission delays (both in receiving data and issuing alerts), the timing
of our results is entirely realistic, and, indeed, these added latencies are typically quite short (~1s). Our GM
estimates were calculated offline, but eqInfo2GM, a GM module currently under development by
ShakeAlert, reports negligible calculation times less than 1.5 s, even for finite-source models.

4. Results

ElarmS results were obtained for 26 out of the 29 earthquakes with seismic data. Thus, we have a total of
26 first-alert triggers from which we recovered ElarmS-Triggered G-larmS solutions. The 2016 M7.8
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é (a) MW:6.0-6:5- ? ? ‘ Ecuador, 2015 M,,7.8 Nepal, and 2011 M,,7.7 N. Honshu, Japan, earth-
M ‘ ‘ quakes did not produce seismic alerts due to poor station coverage or
et I o Co i very far distances to the few closest stations. In the following sections,
T2 i 5| we first discuss the timeliness and accuracy of magnitude estimates
1 : : : : : from the algorithms, then present the MMI threshold results and dis-
0 cuss the timeliness and accuracy of the simulated real-time alerts.
-1 Throughout this section, we use the 2015 M,6.5 Lefkada, 2017 Mw?7.1
@ _> Puebla, 2012 Mw?7.6 Nicoya, 2011 Mw?7.7 Ibaraki, 2015 M8.3 Illapel,
_5 and 2011 M9.0 Tohoku-oki earthquakes as examples to illustrate the
§ 1 performance of the various algorithms over a range of magnitudes. In
q;‘ 0 addition to spanning the magnitude range that we tested, these events
-8 -1 are recorded on as few as four and up to hundreds of stations and also
=2 exhibit different focal mechanisms: Lefkada is a continental strike-slip
é 1 earthquake, Puebla is a relatively deep intraslab normal earthquake,
E) 0 and the remaining four are reverse events. Individual results for these
S six events are shown in Figures 1, 5, and 6; results for all other events
E -1 ; : are available in the supporting information (Table S1 and Figures S1-
§ -2 k(d) Mwl 75°8.0 1 """""" 1 """""" 1 """""" 1 """"" 4’ S'32'). Figures 2-6 and 8-10 compile results for all events from which sta-
5 1 : : : : : tistics are computed.
ER (e) MW§8.0-8.5§ :
= -1 : : 4.1. Accuracy and Timeliness of Magnitude Estimates
-2 Magnitude time series plotted for ElarmS (blue), ElarmS-Triggered G-

larmS (red), and Perfectly Triggered G-larmS (magenta) solutions in

Figure 1 demonstrate the algorithm performance for the six example

earthquakes. Geodetic magnitude estimates tend to approach the final
magnitude (green), tracking modeled magnitude evolutions derived from

published moment rate functions (black, Figure 1). The difference

between the blue ElarmS magnitude estimates and the red and magenta

time (s) G-larmS solutions tends to increase with increasing magnitude (top-left

to bottom-right in Figure 1), revealing saturation in the seismic-only

Figure 2.Mean magnitude error evolutions for six magnitude bins  point-source solutions. Magnitude-binned and averaged errors also show

(@) 6.0 <M <6.5,()6.5<M<7.0,(c)7.0<M < 7.5,(d) 7.5 <M < 8.0,
(e) 8.0 <M < 8.5, (f) 8.5 <M < 9.0. Errors are calculated as the predictions
minus the observations such that a negative number shows magnitude

a significant increase in ElarmS magnitude saturation above M7.5, while
magnitude errors for G-larmS are more stable with respect to increasing

saturation. Solutions were averaged for all events within the magnitude bin ~ magnitude (Figure 2).

(total labeled in bottom right of each panel) for ElarmS (blue) and ElarmS-
Triggered G-larmS (red) solutions as the alerts came in. Points on each
curve show the first alert times of additional events included in each mean.

Figure 3 demonstrates the significant magnitude accuracy improvement
by comparing estimates at three stages: the first time an alert is available
(i.e., the first alert), the alert at 30 s after origin time (if available), and the
final alert in the replay (Figure 1 and Table S1). Alert times are calculated
relative to origin time. For ElarmsS, the final alert time is the last update produced shortly after the last trig-
gered station arrives. For G-larmsS, all solutions were estimated until 180 s after origin time, which is the final
solution time. ElarmS magnitude errors are —1.0 + 1.0 (mean + sample standard deviation) for the first alert,
—0.71 + 0.75 at 30 s, and —0.50 + 0.83 at the final update. ElarmS-Triggered G-larmS magnitude errors are
—0.62 + 0.86 for the first alert, —0.26 + 0.73 at 30 s, and —0.14 + 0.65 at the final update around 180 s. G-
larmS provides an improvement of ~0.5 magnitude units, on average, by 30 s after origin time for all events
(Figure 3). This improves with increasing magnitude as shown in Figure 2 and is often present in first alerts
far earlier than 30 s. G-larmS first- and final-alert magnitude estimates are both statistically more accurate
than ElarmS magnitude estimates, but as expected, the triggered geodetic algorithm takes longer, on aver-
age, to issue its first alerts than the seismic system (Figure 4). Mean first alert times for ElarmS and
ElarmS-Triggered G-larmS are 22 + 13.7 s (mean =+ sample standard deviation) and 31 + 20.5 s, respectively
(Table S1). Figure 4 does show that short first-alert times are achievable for the triggered geodetic system and
that the bulk of the distribution indicates comparable first alert times for the respective algorithms. The bet-
ter final accuracy of the G-larmS results is reflected by the nearly 1:1 ratio in the bottom-right panel of
Figure 3 (see also Figure S36).
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4.2. Accuracy and Timeliness of GM Estimates

In order to understand, from the end-user perspective, whether the
improved, but delayed, geodetic earthquake characterizations are useful,
we study the MMI performance of each solution. To demonstrate the tech-
nique, we show the MMI envelopes for two close-in stations per example
earthquake with distances noted in Figure 5. The multicolored curve with
ablack center line is the MMI envelope of each station and the gray shaded
area shows the WT for the end-to-end test using a threshold of MMI 4. The
shaded area spans from the time that either ElarmS or ElarmS-Triggered
G-larmS MMI predictions exceed the MMI threshold to the time when
the data exceeds the same threshold. Sometimes the final shaking is over-
estimated (Figure 5a) and other times it is underestimated (Figure 5b), but
the threshold approach enables us to look at accuracy in terms of binary
alert classification. Even though GMs may be overestimated or underesti-
mated, as long as they are above or below the user’s threshold of interest,
the alert is useful and considered a success or true alert (made up of TPs
and TNs). Geodetically inferred TP alerts are correctly issued for all 12 site
examples in Figure 5; ElarmS, however, did not predict ground shaking
stronger than the threshold at the bottom-right five stations. This means
that, at least at these locations, it never issues a warning for users who will
experience shaking greater than MMI 4.

Alert classifications for all stations recording the six example events are
shown in Figure 6 with an MMI 4 threshold. For the smallest event, the
2015 My6.5 Letkada earthquake, there is no significant improvement
from the coupled seismic-geodetic solution (Figure 6a). This is not surpris-
ing since seismic saturation is not an issue at this magnitude; however, for
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Figure 5. Examples of the MMI threshold method of alert classification for individual stations. We show two example stations for each of the six example earth-
quakes in Figure 1 including the (a) 2015 My,6.5 Lefkada, (b) 2017 M,7.1 Puebla, (c) 2012 M,7.6 Nicoya, (d) 2011 M,,7.7 Ibaraki, (e) 2015 My8.3 Illapel, and
(f) 2011 Mw9.0 Tohoku earthquakes. The station name and hypocentral distance are labeled in the top right corner of each figure. Red horizontal line shows the
threshold of MMI 4. Colored curve shows the maximum MMI envelope of three component seismic data for each station. Blue curves with shaded regions

show MMI estimates from ElarmS +1o. Red curves with shaded region show MMI estimates from ElarmS-triggered G-larmsS solutions +1o. Magenta curves show
MMI estimates from Perfectly Triggered G-larmS solutions +1c. Warning times calculated based on the crossing of the MMI threshold are shown in bottom-
right-hand corner of each subplot for the three algorithms. The gray shaded regions show the maximum warning times achieved from either ElarmsS or the ElarmS-

triggered G-larmsS solutions. MMI =

Modified Mercalli Intensity.

the larger events, there is remarkable improvement in the GM estimates. To further understand the
performance of the algorithms, we synthesize the results from all 26 events recorded on 5,151 seismic
stations. As described in section 3.3, we classify TP, TN, FP, and FN user-alerts (Figure 8 and Table S2)
and compute WTs for all TP sites for all events (Figures 7, 8, and 9 and Table S3). Here, we focus on
ElarmS-Triggered G-larmS results and use “G-larmS” to mean this version of the algorithm. For
discussion of Perfectly Triggered G-larmS results, please see supporting information text and Figures S33-36.
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For this large magnitude data set, G-larmS produces more positive alerts overall, both FP and TP, and
has longer WTs than ElarmS. Using an alerting threshold of MMI 4, out of a total of 5,151 stations,
ElarmS produced 10.4% TPs while ElarmS-Triggered G-larmS resulted in 39.9% TPs (Table S2 and
Figure 6). The total amount of true alert classifications (TP + TN) increases by ~17 percentage points
when using ElarmS-Triggered G-larmS over ElarmS alone. This primarily represents a large decrease
in missed alerts (FN), from 48.7% with ElarmS to 19.2% with G-larmS, but it is important to note that
FP alerts increase from 1.2% of all sites with ElarmS to 13.4% of all sites with G-larmS. Of the 3,917 sites
that actually experienced shaking exceeding MMI 4, ElarmS alerted only 536 (13.7%), while G-larmS
successfully alerted 2,055 (52.3%). The number of sites experiencing each MMI level is compared to
the number of sites accurately warned by each algorithm using alerting thresholds of MMI 3 and
MMI 4 in Figure S37.
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Figure 6. Real-time alert classification plots for the six example earthquakes shown in Figures 1 and 5 including the (a) 2015 My,6.5 Lefkada, (b) 2017 My,7.1
Puebla, (c) 2012 My,7.6 Nicoya, (d) 2011 M,,7.7 Ibaraki, (e) 2015 My,8.3 Illapel, and (f) 2011 M,9.0 Tohoku earthquakes. Each event has two subplots showing
alert classifications for ElarmS and G-larmsS solutions. Each data point is colored by the warning time at that station based on a threshold of MMI 4 (red lines).
Quadrants are labeled as TP, TN, FP, or FN. Note that the Max. predicted MMI is the maximum predicted after the final solution, not the maximum predicted MMI
before the alerting threshold is exceeded by the station. TP = true positive; TN = true negative; FP = false positive; FN = false negative; MMI = Modified Mercalli

Intensity.

Choosing alerting thresholds of MMI 3 or 5, instead of MMI 4, also leads to more TPs when using G-larmS
compared to ElarmS alone. The numbers of TPs are higher for both algorithms when using an MMI 3 thresh-
old (43.5% for ElarmS compared to 65.2% for G-larmS) and lower when using an MMI 5 threshold (1.8% for
ElarmS compared to 19.9% for G-larmS). Using an alerting threshold of MMI 3, the number of sites experi-
encing shaking greater than MMI 5 for ElarmS and G-larmsS is actually very similar and represents a high
percentage of the observations (Figure S37). This supports using a lower alerting threshold to improve alert
accuracy for larger MMIs for the seismic algorithm.

The huge increase in the number of TP alerts when comparing ElarmS and G-larmsS is exemplified by the
WT distributions shown in Figure 7. Using a threshold of MMI 4, ElarmS has a median WT of
18.9 + 19.7 s. With G-larmS alerts, median WT increased to 55.8 + 46.3 s—more than twice the WT of
ElarmS alone. For ElarmS, median WTs increase to 35.0 s using MMI 3 and decrease to 7.6 s using
MMI 5. This shows that for a seismic system detecting large earthquakes, a lower shaking intensity
threshold will result in more TPs with longer WTs than a higher threshold with fewer TPs and shorter
WTs. Notably, G-larmS results do not show the same relationship to MMI threshold choice: median
WTs decrease from 55.8 s with a threshold of MMI 4 to 52.4 and 54.4 s when using thresholds of MMI
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! ! 3 and 5, respectively. This suggests that G-larmS' WTs are considerably
‘ ‘ less sensitive to MMI threshold than Elarms.

To further explore timeliness, we plot the distributions of WTs at stations
exceeding various shaking intensity levels for each algorithm (Figure 9).
This approach exhibits the maximum possible WTs for each shaking
‘ ‘ intensity level for our results. In general, maximum possible WTs decrease
,,,,,, UUUUUSRRUNSSSRURRR with increasing observed MMI. These results are consistent with those of
‘ : Meier (2017) and Minson et al. (2019). Notably, the long WTs for large
MMI stations shown in Figure 9 are quite similar to probabilistic WTs cal-
culated for the San Francisco Bay Area (Allen, 2006).

5. Discussion

As shown in Figure 9, when weighed against real data, the performance of
a coupled seismic-geodetic system is better than a seismic-only point-
source system; useful WTs are routinely achievable for large events with
high GMs. Earthquake source processes can be complex and GM predic-
tion equations have substantial uncertainties attached to them, thus some
proportion of false alerts remain (Table S2); EEW systems and users that
consider and effectively deal with these uncertainties based on some pre-
100 150 200 viously defined tolerance level will be important going forward. For exam-

Warning Time (s) ple, a user's tolerance can be quantified by a cost ratio r defined as the ratio

between the cost of damage to the cost of taking action to avoid said

Figure 7. True positive warning times for ElarmS (blue) and ElarmS-trig- damage (Aagaard et al., 2018; Minson et al., 2017; Minson et al., 2019).

gered G-larmS (red) results with a Modified Mercalli Intensity 4 threshold.

A value of r > 1 represents a user that is false alert tolerant, while » < 1
is representative of a user that is intolerant to false alerts (it costs more
to take action than to sustain damage). Considering a nuclear power plant, it may be very costly to shut
down, therefore, the cost of action is very high in comparison to the cost of potential damage from uncertain
shaking estimates; this would result in a very small r value for that particular user. For students in a class-
room, however, the cost of getting under a desk for a few seconds to minutes has a very small cost compared
to the cost of injury or death that may result during very strong shaking; this scenario results in a very high
cost ratio and a higher tolerance for false alerts. Likewise, slowing or stopping a train is a relatively low cost
of action compared to the train potentially derailing as a result of strong ground shaking; there are many
such scenarios where the cost ratio is much greater than one.

One way to quantify the success or usefulness of an EEW system is to calculate the Cost Savings Performance
Metric Q for theoretical users with different cost ratios (Aagaard et al., 2018; Minson et al., 2017; Minson
et al., 2019). Q is defined as a function of the cost ratio and real-time alert classifications:

FP+F,
o= €]
TP + FN
Note that this metric is user-dependent, as its value will change based on each user's cost ratio, r, and thus,
when the respective Q is greater than zero, the EEW system is useful for that user and provides a cost savings.
As an absolute performance metric, Q also depends on the data set used. Because each event is not uniformly
sampled (i.e., station spacing, distances, and completeness is varied), the result is affected by the “missing” data.
Nonetheless, comparisons made herein are valid as both algorithms are using the same flawed set of stations.

Using the simulated real-time alert classifications for each algorithm shown in Table S2, we calculate Q
using two cost ratios (r = 2 and r = 10) at the three MMI thresholds for each algorithm. For a cost ratio of
two, ElarmsS alerts not useful at the MMI thresholds tested (negative Q values). For a cost ratio of 10, seismic
alerts result in positive Q values for an MMI 3 threshold, but decrease with increasing MMI to the point of no
longer being useful at MMI 5 (Table S2 and Figure 10). Geodetic solution metrics, on the other hand, are
positive for all MMIs between 3 and 5 using a cost ratio of 10 and are positive for a ratio of two only at an
MMI threshold of 3. The highest Q values are found for the geodetic algorithms at MMI 3 (~0.7),
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Figure 8. Real-time classification plots for thresholds of MMI 3 (left column), MMI 4 (middle column), and MMI 5 (right
column) for all 5,151 individual station records for 31 earthquakes total (“Hayward4Hz” synthetic excluded, see text for
discussion). Top row shows ElarmsS results and bottom row shows ElarnS-Triggered G-larmS results. Data are colored
by warning time based on the specific thresholds used (red lines). Quadrants are labeled as TP, TN, FP, or FN. Note that
the Max. predicted MMI is the maximum predicted after the final solution, not the maximum predicted MMI before the
alerting threshold is exceeded by the station. TP = true positive; TN = true negative; FP = false positive; FN = false
negative; MMI = Modified Mercalli Intensity.
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Figure 9. Empirical CDFs for all warning times at stations with MMI greater than or equal to each threshold (line colors,
right y axes) and histograms of warning times binned and colored by observed maximum MMI (left y axes) for (a) ElarmS
and (b) G-larmS results using a warning threshold of MMI 4. CDF = cumulative distribution function; MMI =
Modified Mercalli Intensity.
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suggesting that G-larmS will be more successful at alerting for larger shak-
ing intensities accompanying large events when using a lower intensity
alert threshold.

Additionally, using a large cost ratio (e.g., 10 or greater) representative of
low-cost actions such as personal response (getting under a desk) or mass
industrial response (stopping trains and elevators) shows that geodetic
algorithm solutions are always useful, with a minimum Q value of 0.51
using a threshold of MMI 5. These numbers also show that geodetic solu-
tions are much less affected by increasing the MMI threshold than Elarm$S
is for large events. We did not include smaller magnitude earthquakes
(M < 6) in our analysis, therefore these statistics may only apply to higher
magnitude events with large GMs.

Figure 10 shows the performance metric results for a large range of cost
ratios for the same MMI thresholds. Most striking is that the coupled
seismic-geodetic approach generally results in higher cost savings at smal-
ler cost ratios for similar MMI thresholds. This is particularly important as
r approaches 1, emphasizing that geodetic analyses provide significant
value to users with small false alert tolerances.

Future studies should include a Q analysis of the full range of magnitudes
to make proper recommendations about the use of the ShakeAlert system.
Of course, much work is also needed in order to quantify the actual values

of the cost ratio, r, for a variety of users; for the present, we can only speculate as to what these might be.
However, using the framework of equation (1) it is clear that geodetic algorithms provide substantial added
value to EEW for M > 7 earthquakes.

Geodetic finite-fault algorithms provide more accurate GM estimates (Figure 9) and they also provide better
user-alert timeliness (Figure 7). If we consider the true alerts, the geodetic system provides improved WTs
and accuracy under all thresholds tested against for a larger portion of sites than ElarmS does (Table S2 and
Figure 7). Geodetic WTs can also be very long (>30 s), even for high MMI thresholds (Figures 5, 7, and 9).

Not only are the median WTs longer when incorporating geodetic finite-fault solutions, but, perhaps more
importantly, for some of the stations with the largest GM, ElarmS never reaches the MMI threshold (e.g.,
Figure 5f). Thus, ElarmS never issues an alert for some of the strongest ground shaking. This behavior results
in more missed alerts or FNs than the geodetic algorithm and a worse overall performance for the seismic
system, especially for users sensitive to FNs.

Because they rely on the first few seconds of the P wave, initial alerts from seismic EEW algorithms are faster
than those from geodetic algorithms (Figure 4). The higher noise levels in real-time geodetic time series
(1-3 cm) preclude detection of the early onset signals and increase the delay until measured GM exceeds
the noise. However, seismic P wave methods have important limitations. As shown in the previous section,
they underestimate the magnitudes of very large earthquakes, and as a result of this and the point source
assumption, are not as useful for providing accurate GM alerts to users for these events. As illustrated during
the Mw9.0 Tohoku-oki earthquake, using seismic algorithms alone would mean that the region of predicted
strong shaking is significantly smaller than the actual area of strong shaking and many users would not
receive an alert. In an effort to ameliorate this, Hoshiba and Aoki (2015) proposed the PLUM method which
uses a very dense network of strong motion sensors and uses present observations of the seismic wavefield to
forecast its likely intensity some time into the future. This algorithm, now operational in Japan, improves
EEW performance during large events but produces only short WTs and is limited to very dense networks.
Similarly, FinDer (Bose et al., 2018) attempts to use the spatial patterns of ground acceleration to produce
finite-fault source estimates, but performs best within dense networks.

Thus, there is a need for faster unsaturated magnitude calculations that can be translated to GM estimates.
GNSSS fills this niche: though slower to create an initial alert, the geodetic EEW algorithms provide signifi-
cantly more accurate magnitude estimation, slip distribution estimation, and, in turn, more accurate GM
prediction for large earthquakes. A common concern is that GNSS source estimates are too slow to be
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useful in EEW, our results show that while this is true for moderate magnitude events around ~M6.5, for
larger earthquakes, GNSS provides a substantial and very valuable improvement in the timeliness and relia-
bility of the alerts. Geodetic algorithms can be used to correctly warn a significantly larger portion of the
population than seismic algorithms alone, and to provide substantial WTs for users in areas that will experi-
ence strong shaking. Our results show that the current ShakeAlert point-source system alone will not be suf-
ficient to forecast the strongest shaking due to the largest events. Instead, combining seismic and geodetic
approaches can capture the earliest shaking with shorter WTs using the seismic data and predict more dis-
tant shaking with longer WTs from the geodetic data. We recommend a combined system as well as one that
continually updates to account for the growth of large earthquakes. Large earthquakes are complex geophy-
sical phenomena, and the best outcome for EEW is obtained when they are measured by geophysical instru-
mentation with complementary strengths. Our results conclusively show that GNSS data add substantial
value to seismic point-source EEW systems.

Finally, we note that we have only produced testing results for one candidate geodetic finite-fault algorithm.
As discussed in section 2, there are other candidate algorithms and we hope that they can be tested in a simi-
lar fashion with the data we make available so that we can make objective comparisons between the pro-
posed algorithms and determine which features of the respective methods produce the most reliable GM
estimates with the longest WTs. Future work should also include a comparison of geodetic algorithms to
more advanced seismic EEW methods such as PLUM (Hoshiba & Aoki, 2015) and FinDer (Bose et al.,
2012). Much of the improvement shown here is likely more a result of the fault-finiteness than of the more
accurate moment magnitudes, and more testing is required to verify this.

6. Conclusions

Here, we quantified the timeliness and accuracy of seismic and geodetic magnitude and GM EEW alerts by
testing a suite of large (M > 6) earthquakes worldwide. ElarmS magnitude errors indicate magnitude satura-
tion for large events and are —1.0 + 1.0 and —0.50 + 0.83 units for the first and final alerts, respectively.
ElarmS-triggered G-larmS magnitude errors are —0.62 + 0.86 and —0.14 + 0.65 units at the first and final
update, respectively. We calculated shaking intensity time series for each station for each event using the
simulated real-time solutions. Applying an MMI threshold approach to accurately characterize WTs on a
per station basis, we classified TP, TN, FP, and FN alerts for each event. Using a threshold of MMI 4,
ElarmS produced only 10.4% TP alerts with a median WT of 18.9 + 19.7 s, while ElarmS-triggered
G-larmS solutions result in 39.9% TP alerts with a longer median WT of 55.8 + 46.3 s. The number of missed
alerts (FN) using thresholds of MMI 3 and 4 is reduced significantly with the seismically triggered geodetic
EEW system. Perfectly triggered G-larmS results provided similar statistics as the triggered system, with
slightly longer WTs and more accurate final magnitudes (see supporting information for
detailed comparison).

Analysis of the cost savings performance metric Q showed that the geodetic solutions provide a higher cost
savings value to users with a variety of cost ratios » when compared to the seismic-only point-source system,
particularly for less false alert tolerant users. It also suggests that both systems will be more successful at
alerting for larger shaking intensities accompanying large events when using a lower intensity alert thresh-
old. These results demonstrate the added value of a geodetic EEW system, quantifying improvements in
magnitude accuracy, GM accuracy, and alert timeliness in GM space. Permanent, static surface displace-
ments are an essential part of earthquake observation and must be incorporated, having been measured with
fidelity via GNSS, into EEW systems to ensure their success for the largest, most damaging earthquakes.
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