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constraining the rheological properties of the fault

and surrounding crust, detection and quantification
of changes in active magma chambers aimed at

understanding a volcano’s plumbing system, the

mechanics of glaciers and temporal changes in glacier
flow with obvious impacts on assessments of climate

change, and the impact of seasonal and anthropo-
genic changes in aquifers. Beyond detection of

coherent surface deformation, InSAR can also pro-

vide unique views of surface disruption, through
measurements of interferometric decorrelation,

which could potentially aid the ability of emergency

responders to respond efficiently to many natural
disasters.

That InSAR can take advantage of a satellite’s
perspective of the world permits one to view large

areas of Earth’s surface quickly and efficiently. In
solid Earth geophysics, we are frequently interested

in rare and extreme events (e.g., earthquakes,
volcanic eruptions, and glacier surges). Therefore, if
3.12.1 Introduction

3.12.1.1 Motivation

In 1993, Goldstein et al. (1993) presented the first

satellite-based interferometric synthetic aperture
radar (InSAR) map showing large strains of the

Earth’s solid surface – in this case, the deforming

surface was an ice stream in Antarctica. The same

year, Massonnet et al. (1993) showed exquisitely

detailed and spatially continuous maps of surface

deformation associated with the 1992 Mw7.3

Landers earthquake in the Mojave Desert in southern
California. These papers heralded a new era in geo-

detic science, whereby we can potentially measure

three-dimensional (3-D) surface displacements with

nearly complete spatial continuity, from a plethora of

natural and human-induced phenomena. An incom-

plete list of targets to date includes all forms of

deformation on or around faults (interseismic, aseis-
mic, coseismic, and postseismic) aimed at
391
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we want to capture these events and their natural

variability, we cannot simply rely on dense instru-

mentation of a few select areas; instead, we must

embrace approaches that allow global access. Given

easy access to data (which is not always the case), this
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ourselves to hypothesis testing, but rather we must
also tap the inherently exploratory power of InSAR.
3.12.1.2 History and Overview

Operating at microwave frequencies, synthetic aper-
ture radar (SAR) systems provide unique images
representing the electrical and geometrical proper-
ties of a surface in nearly all weather conditions.
Since they provide their own illumination, SARs
can image in daylight or at night. SAR mapping
systems typically operate on airborne or spaceborne
platforms following a linear flight path, as illustrated
in Figure 2. Raw image data are collected by trans-
mitting a series of coded pulses from an antenna
illuminating a swath offset from the flight track.
The echo of each pulse is recorded during a period
of reception between the transmission events. When a
number of pulses are collected, it is possible to per-
form 2-D matched-filter compression on a collection
of pulse echoes to focus the image. This technique is
known as SAR because in the along-track, or azimuth,
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Figure 3 illustrates the InSAR system concept. By
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Figure 3 (a) InSAR for topographic mapping uses two

apertures separated by a ‘baseline’, B, to image the surface.

The phase difference between the apertures for each image

point, along with the range and knowledge of the baseline,
can be used to infer the precise shape of the imaging

triangle to derive the topographic height of the image point.

A range difference exists because the scene is viewed from
two different vantage points. This is described by a shift in

the point target response as presented in the text. (b) InSAR

for deformation mapping uses the same aperture to image

the surface at multiple times. A range difference is
generated by a change in the position of the scene from one

time to the next, imaged from the same vantage point. This

range difference is described by a scene shift, not a point-

target response shift, the mathematics is the same but for a
sign change.
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addition to the along- and cross-track location of the
image point, or ‘target’, to allow a reconstruction of
the 3-D location of the targets.

The InSAR approach for topographic mapping is
similar in principle to the conventional stereoscopic
approach. In stereoscopy, a pair of images of the
terrain are obtained from two displaced imaging
positions. The ‘parallax’ obtained from the displace-
ment allows the retrieval of topography because
targets at different heights are displaced relative to
each other in the two images by an amount related to
their altitudes (Rosen et al., 2000). The major differ-
ence between the InSAR technique and stereoscopy
is that, for InSAR, the ‘parallax’ measurements
between the SAR images are obtained by measuring
the phase difference between the signals received by
two InSAR antennas. These phase differences can be
used to determine the angle of the target relative to
the baseline of the interferometric SAR directly. The
accuracy of the InSAR parallax measurement is typi-
cally several millimeters to centimeters, being a
fraction of the SAR wavelength, whereas the parallax
measurement accuracy of the stereoscopic approach
is usually on the order of the resolution of the ima-
gery (several meters or more).

Typically, the postspacing of the InSAR topo-
graphic data is comparable to the fine spatial
resolution of SAR imagery, while the altitude
measurement accuracy generally exceeds stereo-
scopic accuracy at comparable resolutions. The
registration of the two SAR images for the interfero-
metric measurement, the retrieval of the
interferometric phase difference, and subsequent
conversion of the results into digital elevation models
(DEMs) of the terrain can be highly automated,
representing an intrinsic advantage of the InSAR
approach. As discussed in later sections, the perfor-
mance of InSAR systems is largely understood both
theoretically and experimentally. These develop-
ments have led to airborne and spaceborne InSAR
systems for routine topographic mapping.

The InSAR technique just described, using two
apertures on a single platform, is often called ‘cross-
track interferometry’ (XTI) in the literature. Other
terms are ‘single-track’ and ‘single-pass’ interferome-
try (Figure 3(a)).

Another interferometric SAR technique was
advanced by Goldstein and Zebker (1987) for mea-
surement of surface motion by imaging the surface at
multiple times (Figure 3(b)). The time separation
between the imaging can be a fraction of a second
to years. The multiple images can be thought of as
‘time-lapse’ imagery. A target movement will be
detected by comparing the images. Unlike conven-
tional schemes in which motion is detected only
when the targets move more than a significant frac-
tion of the resolution of the imagery, this technique
measures the phase differences of the pixels in each
pair of the multiple SAR images. If the flight path and
imaging geometries of all the SAR observations are
identical, any interferometric phase difference is due
to changes over time of the SAR system clock, vari-
able propagation delay, or surface motion in the
direction of the radar line of sight (LOS).

In the first application of this technique described
in the open literature, Goldstein and Zebker (1987)
augmented a conventional airborne SAR system with
an additional aperture, separated along the length of
the aircraft fuselage from the conventional SAR
antenna. Given an antenna separation of roughly
20 m and an aircraft speed of about 200 m s�1, the
time between target observations made by the two
antennas was about 100 ms. Over this time interval,
clock drift and propagation delay variations are
negligible. This system measured tidal motions in
the San Francisco Bay area with an accuracy of
several cm s�1 (Goldstein and Zebker, 1987). This
technique has been dubbed ‘along-track interferome-
try’ (ATI) because of the arrangement of two
antennas along the flight track on a single platform.
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In the ideal case, there is no cross-track separation of
the apertures, and therefore no sensitivity to
topography.

ATI is merely a special case of space ‘repeat-track
interferometry’ (RTI), which can be used to generate
topography and motion. The orbits of several space-
borne SAR satellites have been controlled in such a
way that they nearly retrace themselves after several
days. Aircraft can also be controlled to accurately
repeat flight paths. If the repeat flight paths result in
a cross-track separation and the surface has not chan-
ged between observations, then the repeat-track
observation pair can act as an interferometer for
topography measurement. For spaceborne systems,
RTI is usually termed ‘repeat-pass interferometry’
in the literature (Figure 3).

If the flight track is repeated perfectly such that
there is no cross-track separation, then there is no
sensitivity to topography, and radial motions can be
measured directly as with an ATI system. However,
since the temporal separation between the observa-
tions is typically days to many months or years, the
ability to detect small radial velocities is substantially
better than the ATI system described above. The first
demonstration of RTI for velocity mapping was a
study of the Rutford ice stream in Antarctica
(Goldstein et al., 1993). The radar aboard the ERS-1
satellite obtained several SAR images of the ice stream
with near-perfect retracing so that there was no topo-
graphic signature in the interferometric phase,
permitting measurements of the ice stream flow velo-
city of the order of 1 m yr�1 (or 3� 10�8 m s�1)
observed over a few days (Goldstein et al., 1993).

Most commonly for repeat-track observations, the
track of the sensor does not repeat itself exactly, so
the interferometric time-separated measurements
generally comprise the signature of topography and
of radial motion or surface displacement. The
approach for reducing these data into velocity or
surface displacement by removing topography is
generally referred to as ‘differential interferometric
SAR.’

Goldstein et al. (1988) conducted the first proof-
of-concept experiment for spaceborne InSAR using
imagery obtained by the SeaSAT mission. In the
latter portion of that mission, the spacecraft was
placed into a near-repeat orbit every 3 days.
Gabriel et al. (1989) used data obtained in an agricul-
tural region in California, USA, to detect surface
elevation changes in some of the agricultural fields
of the order of several cm over approximately a 1-
month period. By comparing the areas with the
detected surface elevation changes with irrigation
records, they concluded that these areas were irri-
gated in between the observations, causing small
elevation changes from increased soil moisture.
Gabriel et al. (1989) were actually looking for the
deformation signature of a small earthquake, but the
surface motion was too small to detect. These early
studies were then followed by the aforementioned
seminal applications to glacier flow and earthquake-
induced surface deformation (Goldstein et al., 1993;
Massonnet et al., 1993).

All civilian InSAR-capable satellites to date have
been right-looking in near-polar sun-synchronous
orbits. This gives the opportunity to observe a parti-
cular location on the Earth on both ascending and
descending orbit passes (Figure 4). With a single
satellite, it is therefore possible to obtain geodetic
measurements from two different directions, allow-
ing vector measurements to be constructed. The
variety of available viewing geometries can be
increased if a satellite has both left- and right-looking
capability. Similarly, neighboring orbital tracks with
overlapping beams at different incidence angles can
also provide diversity of viewing geometry.

In an ideal mission scenario (see Section 3.12.5),
observations from a given viewing geometry will be
acquired frequently and for a long period of time to
provide a dense archive for InSAR analysis. The
frequency of imaging is key in order to provide
optimal time resolution of a given phenomena, as
well as to provide the ability to combine multiple
images to detect small signals. Of course, many pro-
cesses of interest are not predictable in time, thus we
must continuously image the Earth in a systematic
fashion in order to provide recent ‘before’ images. For
a given target, not all acquisitions are necessarily
viable for InSAR purposes. The greatest nemesis for
InSAR geodesy comes from incoherent phase returns
between two image acquisitions. This incoherence
can be driven by observing geometry (i.e., the base-
line is too large) or by physical changes of the Earth’s
surface (e.g., snowfall). Thus any InSAR study begins
with an assessment of the available image archive.
Figure 5 uses an example from the ERS-1 and ERS-2
image archive to illustrate how one would go about
choosing images for InSAR processing, assuming you
wanted to make all available pairs that were not
decorrelated due to large baselines, snow, or tem-
poral separation that was too large. In theory, a
future mission would have sufficiently tight control
on the satellite orbit such that baseline selection
would not be an issue.
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3.12.1.3 Scope

Today, spaceborne InSAR enjoys widespread applica-
tion, in large part because of the availability of suitable
globally acquired SAR data from the ERS-1, ERS-2,
and ENVISAT satellites operated by the European
Space Agency, JERS-1 and ALOS satellites operated
by the National Space Development Agency of Japan,
RADARSAT-1 operated by the Canadian Space
Agency, and SIR-C/X-SAR operated by the United
States, German, and Italian space agencies. As more
and more radar data become available from interna-
tional civilian radar satellites, and as scientific
demands become greater on the use of these data,
including extraction of ever more subtle and well-
calibrated geophysical signals, it is essential to under-
stand the characteristics of the image, how they are
processed, and how that processing can affect the
interpretation of the image data.

There exist both commercial and freely available
software for conventional InSAR processing. While
they may differ in detail, they must all follow a basic
processing flow. Figure 6 presents such a flow,
derived from the authors’ experience in developing
the Repeat Orbit Interferometry Package
(ROI_PAC) software suite (Rosen et al., 2004). This
flow diagram explicitly calls out potential iterative
cycles and use of external data and intermediary
models. Major phases of this processing are described
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in the text. Given quality data and metadata, an

initial complete processing from raw data to a geor-
eferenced deformation image can now be done

automatically and quickly (in under a few hours) on

an average laptop computer. Subsequent iterative
refinements to maximize the quality and quantity

of the observations can require significantly more

effort.
In this chapter, we aim to provide a review of the

basic theory of InSAR for geodetic applications.

Numerous review articles and books on the topic of

InSAR already exist (e.g., Massonnet and Feigl, 1995;
Rosen et al., 2000; Burgmann et al., 2000; Hanssen,

2001), and our goal is not to repeat these works more

than necessary. Instead, we attempt to provide an
overview of what data, processing, and analysis

schemes are currently used and a glimpse of what
the future may hold. As part of this discussion, we

present our biased view of what constitutes best

practices for use of InSAR observations in geodetic
modeling. Finally, we provide a basic primer on the

ties between different mission design parameters and

their relationship to the character of the resulting
observations. In general, this review borrows heavily
from our previous work with many colleagues,

and where appropriate, we point the reader to the

original sources for a more complete discussion.

Much of the SAR processing discussion is derived

and simplified from Rosen et al. (2000), although

here, this discussion is augmented to include a

variety of more recent techniques including persis-

tent scatterers, ScanSAR interferometry, and pixel

tracking.
3.12.2 InSAR

Interferometry relies on the constructive and

destructive interference of electromagnetic waves

from sources at two or more vantage points to infer

something about the sources or the relative path

length of the interferometer. For InSAR, the

interference pattern is constructed from two com-

plex-valued synthetic aperture radar images, and

interferometry is the study of the phase difference

between two images – acquired from different van-

tage points, different times, or both.
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Appendix 1 describes the SAR technique, develop-
ing a model for the image one would obtain from an
idealized surface that consists entirely of a single
reflective point, known as a point target, then further
considering the image effects of natural surfaces. Fine
image resolution is achieved in the cross-track, or
range, direction by transmitting a coded waveform
with sufficient bandwidth. Matched-filter compression
of each received signal pulse then recovers the range
resolution. In the along-track, or azimuth, direction, a
SAR forms a large synthetic aperture by coherently
combining an ensemble of the radar pulses received as
the SAR moves along in its flight path. Matched
filtering then focuses the image in azimuth.

In Appendix 1, it is shown that there is a phase
term exp{�j2kr}, where k¼ 2�/� is the wave num-
ber and � is the radar wavelength, that characterizes
the two-way propagation distance, 2r, from the radar
sensor to the point target and back again. For a
general surface, there is an additional phase term
contributed by each surface scatterer. The net phase
of each image point is the sum of these two terms: the
intrinsic phase of the surface, which tends to be
random, and the propagation phase term.

A resolution element can be represented as a
complex phasor of the coherent backscatter from
the scattering elements on the ground and the pro-
pagation phase delay, as illustrated in Figure 7. The
backscatter phase delay is the net phase of the coher-
ent sum of the contributions from all elemental
scatterers in the resolution element, each with their
individual backscatter phases and their differential
path delays relative to a reference surface normal to
the radar look direction.

Radar images observed from two nearby
antenna locations have resolution elements with
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nearly the same complex phasor return, but with a
different propagation phase delay. In interferome-
try, the complex phasor information of one image
is multiplied by the complex conjugate phasor
information of the second image to form an inter-
ferogram, effectively canceling the common
backscatter phase in each resolution element, but
leaving a phase term proportional to the differen-
tial path delay. Ignoring the slight difference in
backscatter phase of the surface observed from
two different vantage points treats each resolution
element as a point scatterer.
3.12.2.1 The Interferogram

As shown in Appendix 1, for a fixed point target and a

platform moving to synthesize an aperture in azi-

muth, the range and azimuth-compressed point-

target signal, rzcc� is

rzcc� x9; r 9; x0; R0ð Þ ¼ e – j4�R0=� sinc
�

�R
r 9 – R0ð Þ

� �

� sinc
�

�X
x9 – x0ð Þ

� �
½1�

where we have explicitly called out the dependence
on the location of the point target in the definition of
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the point-target response. As described in Appendix 1,
x0 represents the location of the fixed point target in
the along-track coordinate direction, R0 represents
the ‘closest approach’ range from the platform to the
target at that x0, �R is the range resolution after range
matched-filtering, and �X is the along-track resolution
after synthetic aperture processing. The subscript z

indicates that the function is complex valued, cc indi-
cates both range and azimuth compression have been
applied, and � indicates this is a point-target, or delta-
function response, for example a small bright reflecting
object surrounded by a surface that reflects on energy
back to the radar. For a general complex scene �(x, r),
the SAR image after compression is given by convolu-
tion of � with the point-target response

�zcc x9; r 9ð Þ ¼
Z Z

� x; rð Þrzcc� x9; r 9; x; rð Þdxdr ½2�

¼
Z

dx

Z
dr � x; rð Þe – j4�r=�

� sinc
�

�R
r 9 – rð Þ

� �
sinc

�

�X
x9 – xð Þ

� �
½3�

which can be verified by substituting �(x, r)¼ �(x� x0,
r� R0) to recover the impulse response rzcc�.

The SAR image estimate �zcc is the convolution of
the actual reflectivity with a 2-D function similar to a
delta function but with finite width (the sinc func-
tion). This convolution smears out the intrinsic
reflectivity as a point-spread function in optics. If
the system bandwidths were to become infinite, the
sinc functions would become delta functions

sinc
�

�R
r 9 – rð Þ

� �
! � r 9 – rð Þ as �R! 0 ½4�

sinc
�

�X
x9 – xð Þ

� �
! � x9 – rð Þ as �X ! 0 ½5�

such that

�zcc x9; r 9ð Þ ! � x9; r 9ð Þe – j4�r9=� ½6�

Now consider two observations of the reflectivity acq-
uired from slightly different ranges (Figures 7 and 8).

For the original observation at r

�zcc;1 x9; r 9ð Þ ¼
Z

dx

Z
dr � x; rð Þe – j4�r=�

� sinc
�

�R
r 9 – rð Þ

� �
sinc

�

�X
x9 – xð Þ

� �
½7�

For an observation at rþ �r, the point-target
response is now shifted, but the scene must still be
referenced to the original range r:

rzcc� x9; r 9x; r þ �rð Þ ¼ e– j4�ðrþ�rÞ=� sinc
�

�R
r 9– r þ �rð Þð Þ

� �

� sinc
�

�X
x9–x0ð Þ

� �
½8�
�zcc;2 x9; r 9ð Þ ¼
Z

dx

Z
dr � x; rð Þe – j4�ðrþ�rÞ=�

� sinc
�

�R
r 9 – r þ �rð Þð Þ

� �

� sinc
�

�X
x9 – xð Þ

� �
½9�

Again letting the bandwidths tend to infinity, we get

�zcc;1 x9; r 9ð Þ ! � x9; r 9ð Þe – j4�r 9=� ½10�

�zcc;2 x9; r 9ð Þ ! � x9; r 9 – �rð Þe – j4�r 9=� ½11�

Note a shift in the registration of the true scene
reflectivity.

�zcc;2 x9; r 9þ �rð Þ ! � x9; r 9ð Þe – j4� r 9þ�rð Þ=� ½12�

When the true scene reflectivity is aligned, there
is a phase difference between the reconstructed phase
proportional to �r, a geometric term. The true scene
reflectivity is a complex number with random phase.
However, after we have aligned the scene reflectivity
by shifting �zcc,2(x9, r9) by �r, or equivalently by
looking up the value of �zcc,2 at location r9þ �r,
then the scene phase is common to both observations.
We can form the product

I x9; r 9ð Þ ¼ �zcc;1 x9; r 9ð Þ��zcc;2 x9; r 9þ �rð Þ ½13�

¼ � x9; r 9ð Þj j2e – j4� �rð Þ=� ½14�

The function I(x9, r9) is the ‘interferogram’, a com-
plex quantity, the phase of which is just a geometric
term related to the range difference �r (when band-
widths are infinite) between the two images. The
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Figure 9 Vectors describing the relationship between the

phase centers of the radar antennas defining the interferometer

and the surface location, as described in the text.
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range difference can be caused by a vantage point

difference as described here, and illustrated in

Figure 3(a), or by a shift in the scene location

(Figure 3(b)) or a combination of the two. If the

scene shifts rather than the point target, then the

sign of the range difference changes, but the form of

the interferogram is the same.
Consider the case where the range difference �r

arises from a cross-track separation of two observa-

tion points, as illustrated in Figure 3(a).
The phase of the interferogram eqn [14] is the

difference in the geometric path length phases of the

two images

�I ¼ �1 –�2 ¼
4�

�
r2 – r1ð Þ ¼ 4�

�
�r ½15�

There is a clear dependence on the relative
lengths of the two sides of the triangle on the height

of the surface, which in general is not known a priori.

Thus �r is not known exactly to align the reflectiv-

ities to form the interferogram. However, in practical

systems, one can match the reflectivity estimates in

the two SAR observations to within sufficient accu-

racy (generally much better than the image

resolution) to derive a sufficient estimate of �r for

alignment. Once formed, the interferogram for the

cross-track interferometer then contains a record of

the variability of the height of the surface. It is pos-

sible to invert the phase to reconstruct the height. It

turns out it can be done quickly and efficiently, and is

a powerful tool for topographic mapping. Note that

the sign of the propagation phase delay is set by the

desire for consistency between the Doppler fre-

quency, fD, and the phase history, j(t) (Rosen et al.,

2000).
Only the principal values of the phase, modulo 2�,

can be measured from the complex-valued resolution

element. The total range difference between the two

observation points that the phase represents in gen-

eral can be many multiples of the radar wavelength,

or, expressed in terms of phase, many multiples of 2�.

The typical approach for determining the unique

phase that is directly proportional to the range dif-

ference is to first determine the relative phase

between pixels via the so-called ‘phase-unwrapping’

process. This connected phase field will then be

adjusted by an overall constant multiple of 2�. The

second step determines this required multiple of 2�,

and is referred to as ‘absolute phase determination.’

Figure 8 shows the principal value of the phase, the

unwrapped phase, and absolute phase for a pixel.
3.12.2.2 Interferometric Baseline and
Height Reconstruction

In order to generate topographic maps or data for
other geophysical applications using radar interfero-
metry, we must relate the interferometric phase and
other known or measurable parameters to the topo-
graphic height. It is also desirable to derive the
sensitivity of the interferometrically determined
topographic measurements to the interferometric
phase and other known parameters. In addition,
interferometric observations have certain geometric
constraints that preclude valid observations for all
possible image geometries.

The interferometric phase as previously defined is
proportional to the range difference from two antenna
locations to a point on the surface. This range
difference can be expressed in terms of the vector
separating the two antenna locations, called the inter-
ferometric baseline. The range and azimuth position
of the sensor associated with imaging a given scatterer
depends on the portion of the synthetic aperture used
to process the image (see Appendix 1). Therefore
the interferometric baseline depends on the processing
parameters, and is defined as the difference between
the location of the two antenna phase center vectors at
the time when a given scatterer is imaged.

The equation relating the scatterer position vec-
tor, T, a reference position for the platform P, and
the look vector, l, is

T ¼ Pþ l ¼ Pþ r l̂ ½16�

where r is the range to the scatterer and l̂ is the unit
vector in the direction of l (Figure 9). The position P
can be chosen arbitrarily, but is usually taken as the
position of one of the interferometer antennas.
Interferometric height reconstruction is the
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determination of a target’s position vector from
known platform ephemeris information, baseline infor-
mation and the interferometric phase. Assuming P and
r are known, interferometric height reconstruction
amounts to the determination of the unit vector
l̂ from the interferometric phase. Letting B denote the
baseline vector from antenna 1 to antenna 2, setting
P¼P1 and defining

B ¼ P2 –P1 B ¼ Bj j X B; Bh i1=2 ½17�

we have the following expression for the interfero-
metric phase

� ¼ 2�p

�
r2 – r1ð Þ ¼ 2�p

�
l2j j – l1j jð Þ ½18�

¼ 2�p

�
r1 1 –

2 l̂1; B
D E

r1
þ B

r1

� �2
0
@

1
A

1=2

– 1

2
64

3
75 ½19�

where p¼ 2 for repeat-track systems and p¼ 1 for
two-aperture systems with a single transmitter and
two receivers (Rosen et al., 2000), and the subscripts
refer to the antenna number. This expression can be
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Figure 10 SAR interferometry imaging geometry in the plane

deformation (b) mapping.
simplified assuming B� r by Taylor-expanding
eqn [19] to first order to give

� � –
2�p

�
l̂1; B
D E

½20�

illustrating that the phase is approximately propor-
tional to the projection of the baseline vector on the
look direction (Zebker and Goldstein, 1986).

When the baseline lies entirely in the plane of the
look vector and the nadir direction, we have

B¼ (B cos (�), B sin (�)), where � is the angle the

baseline makes with respect to a reference horizontal

plane. Then, eqn [20] can be rewritten as

� ¼ –
2�p

�
B sin � –�ð Þ ½21�

where � is the look angle, the angle the LOS vector
makes with respect to nadir, shown in Figure 10.

The intrinsic fringe frequency in the slant plane
interferogram is given by

q�
qr
¼ 2�p

�
B cos � –�ð Þ

� 1

r sin �
–

r

hp þ re
þ cos � þ h0 þ re sin 	c

hp þ re sin i – 	cð Þ

� �

½22�
Surface during first pass

Surface during second pass

Line-of-sight
to radar

Surface
displacement
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normal to the flight direction for topography (a) and
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where

sin i ¼ hp þ re

h0 þ re
sin � ½23�

and i is the local incidence angle relative to a spherical
surface, hp is the height of the platform, and 	c is the
surface slope angle in the cross-track direction as defined
in Figure 10 at left. From eqn [22], the fringe frequency
is proportional to the perpendicular component of the
baseline: B? ¼ B cosð� –�Þ. As B? increases or as the
local terrain slope approaches the look angle, the fringe
frequency increases. Also from eqn [22], the fringe fre-
quency is inversely proportional to �, thus longer
wavelengths result in lower fringe frequencies. If the
phase changes by 2� or more across the range resolution
element, �r, the different contributions within the reso-
lution cell do not add to a well-defined phase, resulting
in what is commonly referred to as decorrelation of the
interferometric signal. Thus, in interferometry, an
important parameter is the critical baseline, defined as
the perpendicular baseline at which the phase rate
reaches 2� per range resolution element. From eqn
[22], the critical baseline satisfies the proportionality
relationship

B?; crit _
�

�r
½24�

This is a fundamental constraint for interfero-
metric radar applied to natural (distributed
scattering) surfaces. Point targets, sometimes called

permanent scatterers, can maintain phase coherence

beyond this critical baseline, however. Difficulty in
phase unwrapping increases (see Section 3.12.2.4) as

the fringe frequency approaches this critical value.
The fringe variation in the interferogram is ‘flat-

tened’ by subtracting the expected phase from a
surface of constant elevation. The resulting fringes

follow the natural topography more closely. Letting

l̂0 be a unit vector pointing to a surface of constant
elevation, h0, the flattened phase, �flat, is given by

�flat ¼ –
2�p

�
l̂ ; B
D E

– l̂0; B
D E� �

½25�

where

l̂0 ¼ sin �0; – cos �0ð Þ ½26�

and cos �0 is given by the law of cosines

cos �0 ¼
r 2

0 þ re þ hp

� 	2
– re þ h0ð Þ2

2 re þ hp

� 	
r0

½27�

assuming a spherical Earth with radius re and a slant
range to the reference surface r0.
Equation [25] can be simplified by expanding the
look angle �¼ �0þ ��, where �� is the contribution

to the look angle at range r0 from the topographic

relief relative to a reference surface, and �0 is the look

angle to the reference surface at range r0. If

the topographic relief is represented by �z, then ��
¼ �z/r0 sin �0, and

�flat ¼ –
2�p

�
l̂ ; B
D E

– l̂0; B
D E� �

� –
2�p

�
B?

�z

r0 sin �0

½28�

is the component of baseline perpendicular to the
LOS. Equation [28] tells us several things about the
fringes:

• The flattened fringes are proportional to the topo-
graphic height directly. A poorman’s topographic

map then can be generated by flattening the phase

and examining the fringes.

• The flattened fringes are proportional to the per-
pendicular component of the baseline. For zero

baseline, there are no fringes, even if there is a

large parallel component of the baseline. For large

baselines, there are many cycles of phase change

for a given topographic change. From this equa-

tion, we can define ha, the ‘ambiguity height’, as

ha¼ qh/q�¼�r0 sin �0/2�pB?.

• In the absence of topographic variations, there is
still an intrinsic variation of fringes across an

interferogram given by the flattening phase.
3.12.2.3 Differential Interferometry

The theory just described assumes that the imaged

surface is stationary over time, or that the surface is

imaged by the interferometer at a single instant.

When there is motion of the surface between radar

observations there is an additional contribution to the

interferometric phase variation. Figure 10 at right

shows the geometry when a surface displacement

occurs between the observation at P1 (at time t1)

and the observation at P2 (at t2 > t1). In this case, l2
becomes

l2 ¼ TþD –P2 ¼ l1 þ D –B ½29�

where D is the displacement vector of the surface
from t1 to t2. The interferometric phase expressed in
terms of this new vector is

� ¼ 4�

�
l1 þD –B; l1 þD –Bh i1=2 – r1

� �
½30�
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Assuming, as above, that jBj, jDj, and B; Dh ij j are all
much smaller than r1, the phase reduces to

� ¼ 4�

�
– l1; Bh i þ l1; Dh ið Þ ½31�

Typically, for spaceborne geometries B < 1 km, and
D is of order meters, while r1� 600–800 km. This
justifies the usual formulation in the literature that

�obs ¼ �topography þ �displacement ½32�

In some applications, the displacement phase
represents a nearly instantaneous translation of the

surface resolution elements, for example, earthquake

deformation. In other cases, such as glacier motion,

the displacement phase represents a motion tracked

over the time between observations. Intermediate

cases include slow and/or variable surface motions,

such as volcanic inflation or surging glaciers.

Equations [31] and [32] highlight that the interfe-

rometer measures the projection of the displacement

vector in the radar LOS direction. To reconstruct the

vector displacement, observations must be made

from different LOS directions (see Section 3.12.4.5).
The topographic phase term is not of interest for

displacement mapping, and must be removed.

Several techniques have been developed to do this.

They all essentially derive the topographic phase

from another data source, either a DEM or another

set of interferometric data. The selection of a parti-

cular method for topography measurement depends

heavily on the nature of the motion (steady or episo-

dic), the imaging geometry (baselines and time

separations), and the availability of data.
It is important to appreciate the increased

precision of the interferometric displacement mea-

surement relative to topographic mapping precision.

Consider a discrete displacement event such as an

earthquake where the surface moves by a fixed

amount D
!

in a short time period. Neither a pair of

observations acquired before the event (pair ‘a’) nor a

pair after the event (pair ‘b’) would measure the

displacement directly, but together would measure

it through the change in topography. According to

eqn [30], and assuming the same imaging geometry

for ‘a’ and ‘b’ without loss of generality, the phase

difference between these two interferograms (i.e., the

difference of phase differences) is

� ¼ �a –�b ½33�

¼ 4�

�
l1 –B; l1 –Bh i1=2 – r1

� �h
½34�
– l1 þD –B; l1 þD –Bh i1=2
�

– l1 þD; l1 þDh i1=2
��
¼ 0 ½35�

to first order, because D
!

appears in both the expres-
sion for l2 and l1. The nature of the sensitivity
difference inherent between eqns [31] and [35] can
be seen in the ‘flattened’ phase (see eqn [28]) of an
interferogram, often written (Rosen et al., 1996)

� ¼ –
4�

�
B cos �0 –�ð Þ z

r0 sin �0
þ 4�

�
�rdisp ½36�

where �r is the surface displacement between ima-
ging times in the LOS direction, and z is the
topographic height above the reference surface. In
this formulation, the phase difference is far more
sensitive to changes in topography (surface displace-
ment) than to the topography itself. From eqn [36]
�r¼�/2 gives one cycle of phase difference, while
z must change by a substantial amount, essentially
r0/B, to affect the same phase change. For example,
for ERS, �¼ 5.6 cm, r1� 830 km, and typically
B	 200 m, implying �rdisp¼ 2.8 cm to generate one
cycle of phase, z� 450 cm to have the same effect.

The time interval over which the displacement is
measured must be matched to the geophysical signal

of interest. For ocean currents, the temporal baseline

must be of the order of a fraction of a second because

the surface changes quickly and the assumption that

the backscatter phase is common to the two images

could be violated. At the other extreme, temporal

baselines of several years may be required to make

accurate measurements of slow deformation pro-

cesses such as interseismic strain.
Reconstruction of the scatterer position vector

depends on knowledge of the platform location, the

interferometric baseline length, orientation angle, and

the interferometric phase. To generate accurate topo-

graphic or displacement maps, radar interferometry

places stringent requirements on knowledge of the plat-

form and baseline vectors, as well as the intrinsic

accuracy of the phase measurements and, in the case

of differential interferometry, supporting topographic

data sets. One source of phase noise is the refractivity of

the atmosphere, which varies along the radar propaga-

tion path in space and time. Refractivity fluctuation due

to turbulence in the atmosphere is a minor effect for

two-aperture cross-track interferometers, but is much

more important for repeat-track systems (Rosen et al.,

1996). Sensitivities to these parameters are discussed in

detail in Rosen et al. (2000) and Zebker et al. (1994).
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3.12.2.4 Phase Unwrapping

The phase of the interferogram must be unwrapped
to remove the modulo-2� ambiguity before estimat-
ing topography or surface displacement. The
literature describing approaches to phase unwrap-
ping is quite large (Rosen et al., 2000), with initial
development of so-called branch-cut techniques for
InSAR applications by Goldstein et al. (1988), fol-
lowed by over a decade of exploration of other
techniques.

A simple approach to phase unwrapping would be
to form the first differences of the phase at each
image point in either image dimension as an approx-
imation to the derivative, and then integrate the
result. Direct application of this approach, however,
allows local errors due to phase noise to propagate,
causing errors across the full SAR scene. The
unwrapped solution should, to within a constant of
integration, be independent of the path of integration.
This implies that in the error-free case, the integral
of the differenced phase about a closed path is zero.
Phase inconsistencies are therefore indicated by non-
zero results when the phase difference is summed
around the closed paths formed by each mutually
neighboring set of four pixels. These points have
either a positive or negative integral (by convention
performed in clockwise paths). Integration of the
differenced phase about any closed path yields a
value equal to the sum of the enclosed points of
inconsistency. As a result, paths of integration that
encircle a non zero sum must be avoided. In branch-
cut methods, this is accomplished by connecting
oppositely signed points of phase inconsistency with
lines that the path of integration cannot cross. Once
these barriers have been selected, phase unwrapping
is completed by integrating the differenced phase
subject to the rule that paths of integration do not
cross the barriers.

The phase unwrapping problem becomes particu-
larly difficult when the phase in the interferogram is
intrinsically discontinuous, due to layover problems
or true shear topography. Most algorithms are based
on the assumption that the phases are continuous,
and often natural phase discontinuities, often cor-
rupted with inherent phase noise, are difficult to
interpret.

A full treatment of phase unwrapping for geodetic
imaging applications is beyond the scope of this
chapter. There are a number of algorithms available
for use, including branch-cut algorithms (Goldstein
et al., 1988) and statistical cost network flow
techniques (Chen and Zebker, 2001). These techni-
ques yield unwrapped phase images that are
multiples of 2� of the original wrapped phase
image. In the case of branch-cut algorithms, there
are often regions that are blocked off from unwrap-
ping by barriers that form a complete circuit. For
network flow, the entire image is unwrapped. In all
cases, there will be individual pixels or areas that are
placed on the wrong multiple of 2�, and it is often
quite difficult to identify these points without addi-
tional information.
3.12.2.5 Correlation

The relationship between the scattered electromag-
netic fields seen at the interferometric receivers after
image formation is characterized by the complex
correlation function, 
, defined as


 ¼
�1��2

 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1j j2

 �

�2j j2

 �q ½37�

where �i represents the SAR reflectivity at the i

antenna, and angular brackets denote averaging
over the ensemble of speckle realizations. For com-
pletely coherent scatterers such as point scatterers,
we have that 
¼ 1, while 
¼ 0 when the scattered
fields at the antennas are independent. The magni-
tude of the correlation j
j is often referred to as the
‘coherence.’ (Several authors distinguish between the
‘‘coherence’’ properties of fields and the correlation
functions that characterize them (e.g., Born and Wolf
(1989)), whereas others do not make a distinction.)

In general, the correlation will comprise contribu-
tions from a number of effects:


 ¼ 
N
G
Z
T ½38�

where 
N is the correlation influenced by noise in the
radar system and processing approach, 
G is that
influenced by the different observing geometries, 
Z

describes the influence on correlation of the vertical
extent of scatterers (e.g., due to vegetation), and 
T

describes the influence of repositioning of scatterers
within a resolution element over time (Li and
Goldstein, 1990; Zebker and Villasenor, 1992;
Rodrı́guez and Martin, 1992; Bamler and Hartl,
1998; Rosen et al., 2000). It is often more convenient
to discuss decorrelation, defined as �X¼ 1�
X,
where X is N, G, Z, or T.

Geometric decorrelation, �G, also called baseline
or speckle decorrelation, is due to the fact that, after
removing the phase contribution from the center of



406 Interferometric Synthetic Aperture Radar Geodesy
the resolution cell, the phases from the scatterers

located away from the center are slightly different

at each antenna (see Figure 7). The degree of dec-

orrelation can then be estimated from the differential

phase of two points located at the edges of the area

obtained by projecting the resolution cell phase from

each scatterer within the resolution cell, as shown in

Figure 7. Using this simple model, one can estimate

that the null-to-null angular width of the correlation

function, ��, is given by

�� � B?
r
� �

�rl

½39�

where B? is the projection of the interferometric
baseline onto the direction perpendicular to the
look direction, and �rl is the projection of the ground
resolution cell along the same direction, as illustrated
in Figure 11.

The geometric correlation term is present for all
scattering situations, and depends on the system

parameters and the observation geometry. A general

expression for it is


G ¼

Z
ds dr W1 r ; xð ÞW �

2 r þ �r ; x þ �xð Þ

� exp jr p�r þ 2�kð Þ½ �exp j tan 	x�zs½ �Z
dx dr W1 r ; xð ÞW �

2 r ; xð Þ
½40�

where k X 2�/� is the wave number; �k represents the
shift in the wave number corresponding to any dif-
ference in the center frequencies between the two
interferometric channels; �r and �x are the misregis-
tration between the two interferometric channels in
Resolution
element 

Δr  = c
2ΔfBW

Δθ = λ
Δr l

θ

Δrg = Δr
sin θ

Δr l  = Δr/tan θ

Figure 11 A view of geometric decorrelation showing the

effective beam pattern of a ground resolution element
‘radiating’ to space. The mutual coherence field propagates

with radiation beam width in elevation of ����/�rl. These

quantities are defined in the figure.
the range (r) and azimuth (x) directions, respectively;
Wi (r, x) is the SAR point-target response in the range
and azimuth directions; and 	x is the surface slope
angle in the azimuth direction. In eqn [40], �r and �z

are the interferometric fringe wave numbers in the
range and vertical directions, respectively. They are
given by

�r ¼
kB?

r tan � – 	cð Þ ½41�

�z ¼
kB? cos 	c

r sin � – 	cð Þ ¼ �r

cos 	c

cos � – 	cð Þ ½42�

The value of �k can be adjusted to recenter the
range spectrum of each interferometric channel. This

can be accomplished in principle by bandpass filter-
ing the range spectrum differently in each channel.

Under the right conditions, one can adjust the center
frequencies to create the condition 2�k¼��r , which

leads to 
G¼ 1 (Gatelli et al., 1994). In other words,
the geometric decorrelation term in principle can be

eliminated by proper choice of center frequencies for
two observations. In practice, as can be seen from the

equation above, �r depends on the look angle and
surface slope, so that adaptive iterative processing is

required in order to implement the approach exactly.
The volumetric correlation term can be under-

stood in terms of an effective increase in the size of
the projected range cell �rl because the scattering

elements in a given range cell are now extended not
just on a surface but in a volume (Rosen et al., 2000). If

the range resolution is infinitesimally small, the
volume decorrelation effect can be understood as

being due to the geometric decorrelation from a
plane cutting through the scattering volume perpen-

dicular to the look direction. It was shown in
Rodrı́guez and Martin (1992) that the volumetric

correlation 
Z can be written as


Z �zð Þ ¼
Z

dz f zð Þexp – j�zz½ � ½43�

provided the scattering volume could be regarded as
homogeneous in the range direction over a distance
defined by the range resolution. The function f (z),
the ‘effective scatterer probability density function
(pdf)’, is given by

f zð Þ ¼ � zð ÞZ
dz � zð Þ

½44�

where �(z) is the effective normalized backscatter
cross-section per unit height. The term ‘effective’ is
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used to indicate that �(z) is the intrinsic cross-section
of the medium attenuated by all propagation losses
through the medium. The specific form for �(z)
depends on the scattering medium. Models for this
term, and its use in the remote sensing of vegetation
height, will be discussed later.

In repeat-pass systems, there is another source of
decorrelation. Temporal decorrelation, �T, occurs
when the surface changes between the times when
the images forming an interferogram are acquired
(Zebker and Villasenor, 1992). As scatterers become
randomly rearranged over time, the detailed speckle
patterns of the image resolution elements differ from
one image to the other, so the images no longer
correlate.

While it is difficult to describe these effects ana-
lytically, this can often be a strong limitation on the
accuracy of repeat-pass data, so a few illustrative
examples are in order. Open water, where the surface
is roughened by wind or turbulence, is constantly
changing over time, so two images will completely
decorrelate (
¼ 0). Similarly, an agricultural field,
where the entire surface has been turned over due
to tilling, will have 
¼ 0. Standing water with no
vegetation present above water will also completely
decorrelate because no signal is scattered back
toward the radar. However, with vegetation present
above the surface, the water serves as a mirror that
permits signal return from the water as scattered off
the vegetation (Alsdorf et al., 2001; Wdowinski et al.,
2004). Rain can change the arrangement of vegeta-
tion on a surface (e.g., sagging branches or stalks),
reducing the correlation by an amount dependent on
the density of altered vegetation. In some cases, as the
surface dries, the vegetation bounces back to its ori-
ginal position and correlation is at least partially
restored. However, wind typically will alter the posi-
tions of scatterers in vegetation canopies over time,
so correlation is generally degraded in vegetation.
Snow can destroy correlation in the winter months,
with correlation restored after the snow is gone. For
interferometry applied to geophysical processes, we
rely on the block motion of pixels without scatterer
rearrangement to provide estimates of the geodetic
motion. These effects, and changes due to ground
shaking (building collapse, landslides, liquefaction,
etc.), can impair the ability to measure displacements.
On the other hand, it can also be a means for under-
standing the nature of the surface and the severity of
the geophysical effects on the ground.

In addition to these field correlations, thermal noise
in the interferometric channels also introduces phase
noise in the interferometric measurement. The corre-

lation due to thermal noise alone can be written as


N ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ SNR – 1
1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ SNR – 1

2

q ½45�

where SNRi denotes the signal-to-noise ratio for the i

channel (Zebker and Villasenor, 1992). In addition to
thermal noise, which is additive, SAR returns also
have other noise components, due to, for example,
range and Doppler ambiguities. An expression for the
decorrelation due to this source of error can only be
obtained for homogeneous scenes, since, in general,
the noise contribution is scene dependent. Typically,
for simplicity these ambiguities are treated as addi-
tive noise as part of the overall system noise floor.

The effect of decorrelation is the apparent
increase in noise of the estimated interferometric

phase. Rodrı́guez and Martin (1992) presented the

analytic expression for the Cramer–Rao bound

(Sorenson, 1980) on the phase variance

�2
� ¼

1

2NL

1 – 
2


2
½46�

where NL is the number of independent samples used
to derive the phase, and is usually referred to as the
‘number of looks.’ The actual phase variance
approaches the limit eqn [46] as the number of
looks increases, and is a reasonable approximation
when the number of looks is greater than four. An
exact expression for the phase variance can be
obtained starting from the probability density func-
tion for the phase when NL¼ 1, and then extended
for an arbitrary number of looks (Goodman, 1985;
Joughin et al., 1994; Lee et al., 1992; Touzi and Lopes,
1996). The expressions, however, are quite compli-
cated and must be evaluated numerically in practice.

Note that the estimate of the correlation is usually
accomplished by computing the expectation opera-

tions in eqn [37] as spatial averages over a number of

pixels in an interferometric pair. This leads to biased

estimates of the correlation, and care must be exer-

cised in interpreting the estimate. For example, in

open water, where actually the coherence of the

fields is zero, the correlation estimate will produce

decidedly nonzero estimates, in the range of 0.1–0.3,

depending on the number of samples used in the

estimate, NL. The estimator is a random variable

with a probability distribution shape that depends

on the intrinsic coherence, and the number of sam-

ples used in the estimate. In the limit, where only one

sample is used, the correlation estimate will be 1!
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3.12.3 InSAR-Related Techniques

3.12.3.1 ScanSAR or Wide Swath
Interferometry

For previously flown SAR systems, the width of the
swath has been limited to somewhat less than 100 km.
As discussed in Section 3.12.5, SAR antennas must
satisfy particular minimum area criteria to ensure
noise due to ambiguities below a required level. For
wide swath, they must also be quite long, which can
be difficult and costly to implement. For example, to
achieve a 300 km swath in typical Earth orbits using
the typical strip mapping method, the antenna would
have to be over 40 m in length. To achieve wide
swaths with an antenna sized for a swath smaller
than 100 km, the ScanSAR technique has been devel-
oped (Tomiyasu, 1981; Moore et al., 1981). ScanSAR
requires an antenna with rapid electronic steering
capability in the elevation direction. In ScanSAR,
Range direction

Azim
uth dire

cti
on

Radar swath

Radar antenna Radar fl
ight p

ath

Subswath 1 Subswath

Figure 12 ScanSAR for a three-beam system. The radar trans
electronically switches to point to subswath 2, then subswath 3

aspect ratio of the beams in this figure is highly stretched in azim

significant beam overlap from burst to burst within a subswath.
the antenna is electronically steered to a particular
elevation angle and radar pulses are transmitted and
echoes received for a time period that is a fraction
(say one-tenth) of the synthetic aperture time. After
that ‘dwell period,’ also known as the ‘burst period,’
the antenna is electronically steered to another ele-
vation angle (and other radar parameters such as the
PRF, bandwidth, and antenna beam shape are chan-
ged), and observations are made for another short
dwell period. This process is repeated until each of
the elevation directions, needed to observe the entire
wide swath is obtained at which point the entire cycle
of elevation dwell periods is repeated (Figure 12).

For any given elevation direction, or subswath,
there are large gaps in the receive echo timeline,
yet after processing the data, a continuous strip
mode image can be formed. This is true because the
extent of the antenna beam in the along-track direc-
tion on the ground is equal to the synthetic aperture
Burst of pulses

 2 Subswath 3

mits a burst of pulses to illuminate subswath 1, then
. This cycle is repeated for the extent of the data take. The

uth to illustrate the pulsed behavior for the bursts and the

This overlap allows for construction of continuous maps.
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length. As long as the dwell periods for any given

subswath occur more than once in the synthetic

aperture time, there is guaranteed continuous cover-

age of all points on the ground.
It is important to understand this method of gen-

erating radar data because it has strong implications

for the quality of the geodetic data that are derived,

and for the constraints that are imposed on the use of

the data. First we note that the data contained in any

given pulse include the full Doppler spectrum of

information. We are transmitting over a broad range

of angles (the beam width) and that defines the

Doppler frequency content. So each burst of pulses

contains the full Doppler spectrum of information. If

one were to derive the spectrum in the along-track

dimension, the full Doppler bandwidth would be

represented. However, we note that any given scat-

tering element within a burst period only contributes

a portion of its full Doppler history because it is not

observed over the full synthetic aperture time. Thus

each scattering element is only resolved commensu-

rate with the burst period relative to the synthetic

aperture time: if the resolution in strip mode is L/2,

then, the resolution in ScanSAR mode is

L=2ð Þ � Ta=Tb, where Ta is the synthetic aperture

time, and Tb is the burst duration. If one were to

attempt to achieve maximal resolution possible, one

would divide the synthetic aperture time by the

number of subswaths needed, and set the burst dura-

tion to this time. However, as described following, it

is generally better to create several short bursts

within one synthetic aperture. This degrades resolu-

tion further, but improves the radiometric

characteristics of the data.
For interferometry, the most important aspect of

ScanSAR is the fact that each scattering element

provides in a burst only a small portion of its total

Doppler history (Bamler and Eineder, 1996;

Guarnieri and Prati, 1996; Lanari et al., 1998). This

is equivalent to the statement that each scattering

element is observed over a small range of azimuth

angles within the beam. In order for interferometry to

work, a scattering element must be observed with the

same range of Doppler frequencies from one pass to

the other. Only then will the images be coherent,

with similar speckle patterns. This implies that from

pass to pass, each observation must observe from the

same group of angles. In the case of strip mode SAR,

this implies that the intrinsic pointing of the antenna

beam be the same from pass to pass. In this case, the

Doppler history of each scattering element will
follow the same course. For ScanSAR, this condition
also implies a timing constraint on the bursts. Each
burst must occur at the same location in space rela-
tive to a scattering element from pass to pass. This
constraint makes it much more challenging for mis-
sion operators, particularly with short bursts.
Figure 13 illustrates the workflow associated with
ScanSAR interferometry as well as required inter-
mediary data objects.

For a satellite in a long repeat period orbit, for
example 32 days, the ground swath will be sized to
achieve global coverage, around 85 km for the 32-day
repeat period orbit. So from an interferometric point
of view, using ScanSAR with this period does not
improve on the interferometric interval intrinsically.
However, ScanSAR will increase the number of
times a given scattering element will be observed
by a factor of the number of ScanSAR beams. For a
four-beam ScanSAR with 340 km swath in a 32-day
repeat orbit, a scattering element will be observed
roughly every 8 days, so one could make interleaved
32-day repeat interferograms. Alternatively, one
could place the radar in a shorter repeat period
orbit, for example 8 days, and observe always in
ScanSAR mode with four beams. This would allow
8-day interferograms with no interleaving. The
advantage of the latter is that decorrelation will be
less of an issue in the basic repeat-pass measurement.
The advantage of the former is that there will be
greater angular diversity in the measurement, poten-
tially resulting in better constrained models of
deformation.
3.12.3.2 Permanent Scatterers and
Time-Series Analysis

The two major error sources in InSAR are decorrela-
tion due to temporal and geometric effects and phase
errors introduced by the spatially and temporally
random variations of the refractive index of the
atmosphere and ionosphere. Decorrelation creates
areas that are spatially disjoint, and irregularly so
over time, leading to difficulty in interpreting the
geodetic measurements. Because the repeat period
of the orbital satellites is on the order of weeks,
temporal sampling of dynamic phenomena is also
poor. Continuous GPS measurements share similar
characteristics – spatially disjoint measurements that
also are subject to atmospheric effects – but have the
advantage of dual-frequency measurements for iono-
spheric correction, and continuous temporal
sampling while observing multiple satellites, which
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Figure 13 (a) Representative differential InSAR processing flow diagram for ScanSAR interferometry. Blue bubbles

represent image output, yellow ellipses represent nonimage data. Flow is generally down the solid paths, with optional

dashed paths indicating potential iteration steps. (b) Illustration of the workflow by explicity example. The top three black and
white panels show a collection of bursts from one scene for one ScanSAR subswath. The top panel displays raw radar data,

with a small artificial gap between bursts to delimit them. The next panel shows the bursts after range compression – features

appear to be sharper in the range (across image) dimension. The next panel shows the bursts after azimuth compression –

single look complex bursts – features are now sharp in both dimensions, and the existence of surface features in three or four
successive bursts is apparent, showing the intrinsic overlap of the data. The bottom center panel shows burst interferograms

formed from two SLC burst sequences. After combination and flattening, the bursts form a continuous interferogram as

shown on the right, with the left sequence contained in the box at the top as indicated. This interferogram, as well as those of

the other subswaths can then be processed as usual.
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allows for a fine sampling of atmospheric variability,
leading to robust correction algorithms. Given that
important areas of the world have significant issues
with decorrelation and atmospheric water vapor,
interferometry research incorporates methods to
reduce the problem to one more similar to continu-
ous GPS. Corner reflectors have long been used as
coherent calibration sources for interferometric sys-
tems, as they are observable over a wide range of
angles and have a well-defined phase center. Usai
was the first to note that some man-made structures
can behave much like corner reflectors, as though
they are continuously reliable coherent scatterers
over time and independent of the interferometric
baseline (Usai, 1997). By identifying points in a series
of radar images that maintain their coherence over
time, we can create a network of phase measurements
over time and space that are directly analogous to
GPS measurements, though sampled once per month
rather than continuously. Ferretti and colleagues
(Ferretti et al., 2000, 2001) were the first to system-
atize and popularize the treatment of these discrete
point networks for long-term trend analysis. A num-
ber of groups have pursued similar techniques
(Wegmuller, 2003; Hooper et al., 2004). Figure 14
illustrates the way this technique overcomes the
atmospheric error issues.

In practice, it is challenging to determine the loca-
tion of time-coherent scatterers because the phase of
each point is comprised of a topographic component, a
displacement component, and noise components, all of
which are different in each image of a series of images:

��ti
¼ �topo;�ti

þ �def ;�ti
þ �atm;�ti

þ �noise;�ti ½47�

where �ti is the time interval for interferogram i, and
the interferometric phase, ��ti

, is broken into its
principal components. Though the topography is
assumed to be static over time, the phase term
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Figure 14 The ‘permanent scatterer’ technique identifies time-coherent scatterers by estimating the contributions of
topography, deformation, and atmospheric delay to the phase under model constraints through correlation maximization.

Topography is assumed to be static (with the interferometric phase proportional to baseline), deformation is assumed to

follow some functional form (e.g., linear or sinusoidal with time), and atmospheric delay is assumed to vary randomly in time

and with long spatial wavelength.
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�topo,�ti
is variable because each interferogram has a

different perpendicular component of the baseline
B?,i. Similarly, the other component terms will
change over time. If we simply coalign all available
images, then estimate the correlation over time for
each point using eqn [37] (with expectation approxi-
mated by time averaging), the variability of the phase
over time will lead to an estimate of zero correlation.
Ferretti et al. (2000, 2001) chose to identify time-
coherent points by using a brightness threshold, as
points with high mean brightness over time have
small phase dispersion. This requires that images
are radiometrically calibrated, such that variations
in the brightness are due to scene variations, not
radar system variations (e.g., radar antenna pointing
variability).

Once these initial points are identified, it is
necessary to find a solution for each phase term
for all i that maximizes the correlation estimate.
The maximization procedure involves a search
over reasonable domains of expected phase values,
which can be intensive. For example, if a DEM is
available, the topographically induced phases are
known, except for errors introduced by the DEM
errors, so the search range for topography should
be bounded in a region around the known topo-
graphy by that error. The deformation is
parametrized by a functional form such as linear
or sinusoidal, and the solution of the parameters is
part of the maximization. The atmospheric error is
assumed to be spatially slowly varying, and uncor-
related over time.

This technique has been employed with success in
urban areas where man-made time-coherent scatter-
ing points abound. Results include the measurement
of subsidence rates of individual buildings at the level
of less than 1 mm yr�1, and seasonal effects due to
groundwater withdrawal and recharge (Ferretti et al.,
2000; Colesanti et al., 2003). Applications to problems
of geophysical interest are limited because the areas
of interest are generally larger and sufficient time-
coherent scatterers frequently do not exist in nonur-
ban environments. Burgmann et al. (2006) combined
GPS-derived horizontal velocities and permanent
scatterer InSAR estimates of uplift in the San
Francisco Bay Area to track tectonic uplift in areas
not subject to seasonal effects, at an accuracy of better
than 1 mm yr�1.
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Other methods have been developed to exploit
long time series available for over a decade of SAR
observations, but without the restriction of using only
time-coherent point scatterers, and without specific
assumptions of the model of deformation. By limiting
data to only those scene combinations where the
baseline is well below the critical baseline, one can
expand the area of usable image pixels that are from
natural surfaces, but are coherent in time as well
(Lundgren et al., 2001; Berardino et al., 2002;
Schmidt and Burgmann, 2003; Lanari et al., 2004b).
In these methods, each collection of images allows
the generation of a dense spatial network of points
(for well-correlated areas, potentially every image
pixel could be included in the network). For each
point, interferometric pairs formed from various
combinations of images yield phase differences over
available time intervals in the time series where
correlation is good, with the shortest sampling inter-
val being the satellite repeat period. From these
phase difference measurements for each network
point, an inversion is carried out to reconcile all
differences. The inversion adjusts each interferogram
by a constant to bring all differences into agreement,
and attempts to integrate the phase differences in a
piecewise linear fashion, minimizing the distance
between phase estimates from one time step to the
next. The inversion can be carried out with con-
straints that smooth the estimates of phase. It is also
possible to incorporate parametrized model functions
in the inversion, for example, for seasonal effects, if
desired. These techniques derive directly from GPS
network inversion methods, with the substantive dif-
ference being the much higher density of samples in
space, but much lower density of samples in time, for
InSAR. These approaches are further discussed later
in the chapter.
3.12.3.3 Speckle Tracking and Pixel
Tracking

InSAR provides the satellite LOS component of rela-
tive displacements within an image. Albeit at lower
sensitivities, we can also measure the along-track
component of the displacement field using cross-
correlation techniques. This is frequently referred
to as speckle tracking, pixel tracking, or range and
azimuth offsets. For crustal deformation purposes,
we frequently only consider the along-track or azi-
muth offsets (AZOs) which are a purely horizontal
component of the displacement field and are by con-
struction perpendicular to the LOS phase-based
observations. This approach is strictly speaking not

an interferometric approach, but we include it here

since it uses the same single look complex (SLC)

images used in forming interferograms (Figure 15).
At its most basic level, this approach is simply

automatic tie-point estimation and frequently uses

the same algorithms and software used to calculate

tie points when coregistering two SLCs to form an

interferogram or to coregister a DEM-based height

map to an interferogram to remove topographic

effects (e.g., Michel et al., 1999a, 1999b; Michel and

Rignot, 1999; Joughin, 2002; Short and Gray, 2004;

Gray et al., 2001). Given a master and slave SLC and a

rough guess at their relative gross offsets, a chip of

N�M pixels (typically several tens of pixels on a

side) is cross-correlated from both images to provide

range and azimuth offset with subpixel accuracy.

This process can then be repeated over a grid.

Typical sensitivities are about somewhere between

1/10 and 1/30 of a pixel dimension. For the ERS

satellites, these numbers correspond to about

10–20 cm sensitivity, with the advantage that they

do not need to be phase unwrapped. Since the mea-

surement is done using ensembles of pixels, the

spatial resolution is substantially degraded relative

to standard interferometric observations. This sensi-

tivity of the measurement is limited by the

dimensions of a pixel. While the range offsets provide

the same component of the displacement field as the
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interferometric phase, it is usually much less sensitive
and is therefore not usually used. However, there are
times, when correlation is low, that the phase-based
measurements will not work, but the range offsets can
(e.g., Peltzer et al., 1999). In such cases, the range offsets
need to be corrected for topographic effects in a way
similar to what is done for the phase measurements.
The AZO measurement complement the interfero-
metric phase measurements, and therefore always
provide useful observations when the expected displa-
cements are large enough to be detected.

Algorithmically, the approach is the same as that
used to generate tie points or offset measurements
using optical imagery (Michel et al., 1999a, 1999b).
With InSAR data, we can achieve extremely accurate
estimates of offsets with no inherent contrast in the
mean radar backscatter. Since SAR data exhibit high-
contrast speckle characteristics from pixel to pixel
(Appendix 1) that are the same in interferometrically
coherent SAR images, allowing good matching.

Cross-correlation can be performed using the
complex images directly or using just the amplitude
of the complex image. When complex images are
used, we are in essence computing small interfero-
grams and assessing the quality of the fringes therein.
Because the phase is used, when the coherence is
good, this method can lead to very tight constraints
on the pixel offsets. However, when the coherence is
poor, the phase contribution leads to extremely poor
correlation estimates even when common surface
features that are well correlated are present. This is
truly a ‘speckle-tracking’ approach in that if the
speckle differs between images, it will not track
well. Cross-correlation of amplitude images tracks
features, and so would be more accurately called
‘feature-tracking’ or ‘pixel-tracking’. Because speckle
appears as high-contrast features from pixel to pixel,
amplitude matching also tracks speckle, though it
lacks the tightness of the match of complex image
correlation when the coherence is good. But it per-
forms very well when images are rich with surface
features in areas of poor interferometric correlation.
Experimentation with both approaches show that
very little matching accuracy is lost by correlating
amplitude rather than complex images.

The complex or amplitude image is typically over-
sampled by a factor of 2 before the cross-correlation;
this is needed to avoid spectral aliasing of the images.
The peak of the cross-correlation surface is identified
therefore at half-pixel spacing as a first approximation
to the offset location. The correlation surface is then
interpolated to find the correlation peak with finer
granularity. Accuracies have been empirically esti-
mated at about 1/30 of a pixel, on the order of
10–15 cm for typical SAR systems.

We illustrate the use of pixel tracking with an
example taken from the 1999 Mw 7.6 Chi–Chi earth-
quake in Taiwan. This event was a thrust earthquake
where the footwall had relatively little topography,
while the hanging wall is extremely rugged. Standard
InSAR produced clean fringes in the footwall region,
but is completely decorrelated in the hanging wall
(Figure 16). In contrast, the AZO observations can be
made for the entire image, with the caveat that strong
spatial (median) filtering was required to remove
outliers (Figure 17).

Instead of using speckle or pixel tracking methods,
as described above to infer the along-track compo-
nent of displacement, Bechor and Zebker (2006)
proposed splitting the aperture normally used in
forming a single interferogram into separate interfer-
ograms using the forward and backward squinting
SLCs (relative to the nominal squint angle for the
standard SLC). These two interferograms can then in
turn be differenced to produce a map of along-track
displacements. They showed accuracies on the order
of a few centimeters when the interferometric coher-
ence was very good. In areas of lower coherence, the
phase difference-derived estimates were comparable
to typical AZO estimates.
3.12.4 A Best-Practices Guide to
Using InSAR and Related Observations

Our general goal with geodetic imaging is to discover
new crustal deformation processes and to estimate
the value and uncertainties of controlling parameters
associated with these as well as previously recognized
mechanisms. The approaches adopted for using these
data vary depending on the extent and type of obser-
vations available and the geophysical target. Here, we
address some of the approaches that have found some
utility in different situations. Beyond the exploratory
mode of just looking at the images to discover things,
we can consider how to best combine the images, deal
with long time series, and how to incorporate these
observations in parameter estimation schemes in a
computationally efficient manner. In all cases, we
must consider the different components of the mea-
surements that act as apparent errors in the geodetic
signal. From the perspective of modeling tectonic
processes, the primary sources of error come from
inadequacies in our knowledge of the satellite orbits
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and propagation delays accumulated in the iono-
sphere and troposphere. Here, we begin with a
summary of error sources, since that impacts all
uses of the data. At a minimum, knowledge of the
error structure (i.e., the covariance structure) is
important in order to correctly execute any estima-
tion of geophysical parameters. Furthermore, in
certain circumstances, a given component of the
error may be reduced using a variety of techniques.
3.12.4.1 Interferometric Baseline Errors

The primary impact of orbital errors is to induce
long-wavelength phase ramps associated with incor-
rect removal of topographic effects. If B? is long,
errors in B? can also lead to short-wavelength errors
in regions of rough topography. Typically, apparent
long-wavelength deformation gradients associated
with errors in B? are dealt with by removing a best-
fit bilinear or biquadratic polynomial ramp from both
the observations and the models before comparing
the two (e.g., Pritchard et al., 2006; Pritchard and
Simons, 2006), or by using independent data, usually

GPS observations, to either re-estimate the interfero-
metric baseline or to constrain the longest

wavelengths of the physical model (e.g., Peltzer

et al., 2001; Simons et al., 2002). Alternatively, if the
deformation signal is known to be localized within

the interferogram, one can flatten the image by
assuming zero deformation in the far field.

In order to merge GPS observations with InSAR
data, we must take care how these data are combined.
The surface deformation field frequently shows a

strong cyclical seasonal component (e.g., Dong et al.,

2002). This seasonal signal is exemplified by the GPS
time series in Figure 18, which shows a greater than

1 cm peak-to-peak seasonal displacement. Of course,
with InSAR data, one is sensitive to spatial gradients

in these seasonal signals on the scale of the InSAR
image, which will usually be smaller than implied by

these kind of absolute GPS observations. If one uses
GPS to refine estimates of B? then one should use the
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GPS data before any seasonal signals have been
removed. Conversely, if one assumes the long wave-
length in the data are unconstrained and uses the
GPS to constrain the model directly, then clearly
the seasonal signal should be removed first. This
latter approach is safest since the seasonal signal in
the GPS is not completely due to surface displace-
ments, and similarly, there are long-wavelength
errors in interferograms caused by tropospheric
delays and not by errors in B?.
3.12.4.2 Propagation Delays

The atmosphere and ionosphere introduce propaga-
tion phase and group delays to the SAR signal. In
repeat-track systems, the propagation effects can
be more severe. The refractive indices of the atmo-

sphere and ionosphere are not homogeneous in

space or time. For a spaceborne SAR, the path delays

can be very large, depending on the frequency of

the radar (e.g., greater than 50 m ionospheric path

delay at L-band), and can be quite substantial in the

differenced phase that comprises the interferogram

(many centimeters differential tropospheric delay,

and meter-level ionospheric contributions at low

frequencies). These effects in RTIs were first

identified by Massonnet et al. (1993) and later

by others (Goldstein, 1995; Massonnet and Feigl,

1995; Tarayre and Massonnet, 1996; Rosen et al.,

1996; Zebker et al., 1997; Hanssen, 2001; Lohman

and Simons, 2005; Gray et al., 2000; Mattar and

Gray, 2002). Ionospheric delays are dispersive, so
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frequency-diverse measurements can potentially

help mitigate the effect, as with two-frequency GPS

systems. Tropospheric delays are nondispersive, and

can mimic topographic or surface displacement

effects. Schemes for distinguishing tropospheric

effects from other effects have been proposed

(Massonnet and Feigl, 1995), and use of averaging

interferograms to reduce atmospheric noise is com-

mon (Zebker et al., 1997; Fujiwara et al., 1998). Given

even a purely horizontally stratified troposphere, one

expects topographically correlated delays due to dif-

ferences in total water content. Given a simple model

of the distribution of water and a few points of cali-

brations from GPS estimates of zenith wet delay

(ZWD) or from radiosondes, one can attempt to

correct for this effect (Delacourt et al., 1998); unfor-

tunately, excursions from horizontal stratification are

the norm, and in fact, in any given interferogram, it is

common to see phase variations that correlate with

topography but with amplitude (and even sign) that

vary from feature to feature.
There are a variety of more involved approaches

to deal with the problem of path delays associated

with spatial and temporal variations in tropospheric

water vapor content. One can estimate statistically
their impact on the estimates of tectonic deformation

and account for these in the data covariances when

modeling. Alternatively, one can attempt to expli-

citly model and remove these delays.
In terms of estimating the appropriate statistics,

several studies have attempted to define the variance

and distance-dependent covariance of these delays

(e.g., Massonnet and Feigl, 1995; Goldstein, 1995;

Zebker et al., 1997; Williams et al., 1998; Hanssen,

2001; Emardson et al., 2003; Li et al., 2004, 2006b;

Lohman and Simons, 2005). Using estimates of

ZWD from GPS data in Southern California,

Emardson et al. (2003) assume an isotropic (azimuth

independent) model and find that the variance, �,

between two locations varies as �¼ cL�þ kH,

where L and H are the relative horizontal and vertical

separation distances between locations. The values of

c, �, and k are estimated to be 2.5, 0.5, and 4.8,

respectively. The value of � is expected to be more

or less region independent, but the value of c may

vary between regions. This model must then be

scaled to account for the InSAR LOS direction.

Limitations of this model include the assumption

that the height dependence is independent of abso-

lute height, and that there are no atmospheric

http://sopac.ucsd.edu
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variations at scales smaller than the spacing in the
GPS networks, which could influence the estimate of
the height dependence (Xu et al., 2006). Lohman and
Simons (2005) find reasonable agreement between
the estimates from Emardson et al. (2003) with
empirical estimates from real interferograms
(Figures 19 and 20). Adopting this statistical
approach assumes that one has a large ensemble of
interferograms to use in one’s analysis. If one has only
a few image pairs, then the statistics of small numbers
comes into play when interpreting a specific feature
in a given interferogram. Furthermore, if one
removes the long wavelengths from a given interfer-
ogram, then one is also affecting the estimates of �.
These difficulties suggest that at a minimum, one
should estimate the full covariance empirically, if
necessary, removing an initial model of the phenom-
ena of interest first (Lohman and Simons, 2005).

Since GPS can measure both the ZWD and its
spatial gradient, it is possible to use the GPS obser-
vations to make a wet delay image to correct
individual interferograms (Williams et al., 1998; Xu
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regions of the world where the GPS network is
sufficiently dense to make any of these methods
viable.

The lack of dense GPS networks in all regions of
geodetic interest motivates the need for satellite-
based estimates of the wet delay. Significant progress
has been made to this end using observations from
near-infrared imaging radiometers such as NASA’s
MODIS (Li et al., 2005) and the MERIS instrument
on ESA’s ENVISAT satellite (Li et al., 2006a;

Puyssegur et al., 2007). The latter has the advantage
of estimating the water delay in the same viewing
geometry and at the same time as the acquisition of
the radar data. Unfortunately, imaging radiometers
are limited to use in the daytime and cloud-free
conditions. However, if clouds are not pervasive,
then the resulting holes can be interpolated.
Thermal infrared measurements could potentially
be used for night-time observations. Ideally, use of

image-based estimates would be done in combination
with GPS estimates of wet delay where and when
available.

Thus far, we have only addressed direct measure-
ments of the wet delay. Recently, progress has been
made using high-resolution weather models to esti-
mate the spatial variation in wet delay (Foster et al.,
2006; Puyssegur et al., 2007). Foster et al. (2006)
demonstrate the use of the MM5 weather model
(Grell et al., 1995) to correct interferograms from
the big island of Hawaii. In this case, the model is
updated every 12 h using local meteorological data,
and estimates of wet delay are made every hour and
interpolated to the time of acquisition for each radar
image. Using this model, they can generally reduce
the variance by about a half at wavelengths of 30 km,
although they find limitations in the model in regions
of high topographic gradient. Puyssegur et al. (2007)
go one step further and combine the MM5 model
with MERIS observations. In the near future, where
available, imaging radiometer and GPS wet delay
observations will be combined with physical models
to produce the best estimates of wet delay possible.
Indeed, one would expect that any future dedicated
InSAR mission would produce and distribute
estimates of wet delay for each image acquired.
Clearly, once the best estimates of wet delay are
removed, it is straightforward to empirically estimate
the residual covariance structure on an interfero-
gram-by-interferogram basis (Lohman and Simons,
2005).
3.12.4.3 Stacking Single-Component
Images

Independent of whether or not one can correct inter-
ferograms for path delay effects, if the primary
geophysical target is a single event that occurred
quickly (in terms of satellite InSAR, this implies any-
thing lasting less than the orbit repeat time) or
alternatively is a gradual process occurring at con-
stant rate, it may be useful to increase the signal-to-
noise ratio by stacking (i.e., averaging) multiple
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interferograms. Such stacks have the advantage of
reducing effects due to tropospheric delays since
these are uncorrelated on timescales of more than a
day (e.g., Hanssen, 2001; Emardson et al., 2003) and
thus are useful to discover small signals (e.g., Peltzer
et al., 2001; Lyons and Sandwell, 2003; Gourmelen
and Amelung, 2005; Pritchard et al., 2006). Stacking
images can also reduce computational burden in
parameter estimation schemes by reducing the
amount of observations (e.g., Pritchard et al., 2006).

These stacks can be made either in radar
coordinates (choosing one interferogram as the mas-
ter) or in geocoded (latitude and longitude)
coordinates. Before stacking, one needs to account
for long-wavelength errors or phase ramps associated
with errors in estimates of the interferometric
baseline for each interferogram. The phase ramp is
usually parametrized as a bilinear or biquadratic
polynomial function of azimuth and range (or
geographic coordinates). Neglecting to deal with
the ramp can result in biased stacks. If several GPS
displacement vectors are available for the region of
interest, they can be used to resolve the ramp
parameters either before or after forming the stack.

The simplest and most common brute force stack
is made by just adding all the interferograms
together. In this approach, regions of decorrelation
in the resultant stack will be the union of decorre-
lated regions in the individual interferograms.
Therefore, one may choose not to include an indivi-
dual interferogram if it has an excessively large
amount of decorrelation. An example of such a single
LOS image stacks for a short-duration event comes
from images of the coseismic displacements from
deeper and smaller earthquakes in Chile (Pritchard
et al., 2006). In most cases, it is advisable to take a
more formal approach to stacking.

When considering making stacks, one should
separate the case of a single rapid event from that of
linear secular deformation. In the case of a single
rapid event, the stack is made in terms of displace-
ments. Scenes are averaged together in a
straightforward fashion – ideally, using a weighted
average, where the weighting is the inverse covar-
iance matrix of the observations.

The full covariance is constructed of three primary
parts: (1) the variance of a given pixel on the diagonal,
(2) the intra-image pixel-to-pixel covariance primar-
ily due to ionospheric and tropospheric path delays,
and (3) intra-image covariances associated with use of
a single common image in two separate interfero-
metric pairs (Emardson et al., 2003). Assuming
ergodicity, one estimates the pixel variance empiri-

cally using estimates of the local phase variance over a

small patch of pixels. Doing this for each image is

important since different interferograms or offset

images may have had different amounts of spatial

filtering applied to them, as well as different amount

of temporal decorrelation. The intra-image pixel-to-

pixel covariance should also be computed empirically

since the degree of filtering and long-wavelength

ramp removal may vary from image to image.
Usually, this covariance is assumed to depend

only on the relative distance between two given

pixels (Hanssen, 2001; Emardson et al., 2003;

Lohman and Simons, 2005). In contrast to the inter-

image pixel covariance, the intra-image covariance

can be derived analytically (Emardson et al., 2003).

When calculating a displacement stack with the full

covariance matrix, one would normally pose the pro-

blem as a least-squares problem. The use of a purely

least-squares approach relying on an L2 norm, is

somewhat debatable since phase noise is not necessa-

rily Gaussian. It may in fact be more robust to use an

L1 norm, which is equivalent to asking for the med-

ian and not the mean displacement. Regardless of

the adopted norm, using a formal approach that

includes the local estimate of variance permits one

to include all available data regardless of the level of

decorrelation.
For a constant rate process, the estimation of the

rate at any given pixel is best described using a bit

more formality. The underlying equation is simply

�i ¼ Tiv þ i ½48�

where �i, Ti, v, and i are the observed range change,
time span, rate, and error, respectively, for a pixel in
the ith image. We can rewrite this equation as the
linear system for the ensemble of images:

d ¼ �v þ E ½49�

where d, �, and E are the vectors of observations, time
spans, and errors, respectively. This system has a
general weighted least-squares solution

v ¼ �t W �ð Þ – 1�t Wd ½50�

where as described earlier, the weight matrix, W, is
the inverse of the full data covariance matrix. This
approach naturally deals with regions that are dec-
orrelated in some but not all of the images. The same
issue described above relating to L2 versus L1 norms
applies here.
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While not recommended, one could assume that
the pixel variances are constant within a given dis-
placement image and between different displacement
images, as well as ignore all the covariances. These
frequently adopted but unnecessary simplifications
lead to the explicit least-squares solution:

v ¼
PN

i¼1 �Ti��iPN
i¼1 �Ti�Ti

½51�

In a study of postseimic deformation from historic
earthquakes in the Basin and Range Province of the
western US, Gourmelen and Amelung (2005) remove
the long-wavelength ramp from individual compo-
nent interferograms, then add the residual
interferograms up and divide the total displacement
by the summed total time span of all the interfero-
grams. This is equivalent to converting all the
individual interferograms to rates, then averaging
the individual rates, weighted by their respective
time spans. In other words

v ¼
PN

i¼1 ��iPN
i¼1 �Ti

¼
PN

i¼1 ��i=�Tið Þ�TiPN
i¼1 �Ti

½52�

Equation [52] is only the same as the least-squares
solution shown in eqn [51] if all the interferograms
span equal time periods. In that special case, then

v ¼ 1

N�T

XN

i¼1

��i ½53�

In a study of slow interseismic deformation in the
Eastern California Shear Zone, Peltzer et al. (2001)
effectively adopted eqn [53]. Given that they use
interferograms of approximately the same duration
(about 4 years), they simply averaged the rates
(unweighted by time), which is close to the least-
squares solution assuming constant and uncorrelated
data errors.

In general, given today’s computational resources,
there is no reason not to use the full weighted least-
squares estimation (e.g., eqn [50]). In particular, this
approach allows a more rigorous estimate of both
rates and their associated errors. When a final stack
is complete, if desirable, it is then possible to create a
mask based on the final estimated variances.
3.12.4.4 InSAR Time Series

We can adopt more complicated models than the
linear one just described. For instance, given the
potential for seasonal signals (e.g., Figure 18;
Amelung et al., 1999; Hoffmann et al., 2001; Schmidt
and Burgmann, 2003), it may be desirable to augment
eqn [48] by explicitly including a seasonal variation
in the estimation process. Indeed, given enough tem-
poral sampling, there exists the possibility for a wide
range of time-series approaches, effectively mimick-
ing all the approaches adopted in GPS analysis.

There are a couple of variants to current GPS
analysis approaches. The first approach aims to
make the cleanest time series possible for later
mechanical modeling. This approach can include
estimates of site-specific signals including seasonal
signals (frequently assumed to be sinusoidal), random
walk and flicker noise at each site, and spatially
correlated processes such as daily variations in refer-
ence frame estimates (e.g., Dong et al., 1998, 2003,
2006). Generally, the temporal and spatial analyses
are separated in these approaches. A more complex
underlying temporal evolution can also be adopted
including a superposition of behaviors including lin-
ear rates, coseismic steps, and postseismic
exponential or logarithmic decays. At a minimum,
these more complicated model terms reduce biases
in estimating seasonal and reference frame contribu-
tions and can always be added back in for subsequent
mechanical modeling. Of course, the inferred model
terms, such as coseismic steps, are themselves useful
as input into subsequent mechanical models.

An alternative approach uses data from a network
of GPS sites to simultaneously solve for time-varying
parameters of a specified mechanical model and the
aforementioned nontectonic signals. This approach is
exemplified by the extended network inversion filter
(ENIF) (Segall and Matthews, 1997; McGuire and
Segall, 2003; Fukuda et al., 2004).

The parallels between GPS and InSAR time-
series analysis are numerous. Obviously, the physical
processes of interest are the same, and they are sen-
sitive to similar nontectonic processes such as
seasonal effects. Other similarities exist such as the
ambiguity in absolute displacements with InSAR
data, which is equivalent to reference frame error in
GPS. Despite these parallels, InSAR time-series ana-
lysis has a few unique challenges. In terms of
nontectonic signals, we may want to remove the
effects of the troposphere (empirically or by physical
model) and we have errors due to inaccurate removal
of topographic effects stemming from inaccurate
orbits. With typical suites of interferograms from a
given orbital track, we may also face incompletely
connected chains of dates. For instance, given images
acquired at times A, B, C, and D, we may be able to
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form interferograms IAB, IBC, and ICD, or perhaps we
only have IAC and IBD . In the later case, we would like
to be able to construct a continuous time record.

To deal with these issues, we have the same var-
iants in modeling approaches for InSAR time series
as just described with GPS data. One approach
attempts to decompose a suite of interferograms
into its component time intervals (e.g., AB, BC, and
CD), and to solve for the incremental displacements.
Ambiguities in combining unconnected pairs (or col-
lections of pairs) requires some form of regularization
of the time series. One approach, based on use of
singular value decomposition (SVD), finds a time
series that fits the available interferograms while
minimizing the implied velocities in any given
underlying time interval (Berardino et al., 2002).
This approach is equivalent to minimizing the tem-
poral gradient of the deformation field. Alternatively,
one could use explicit Laplacian damping to mini-
mize the roughness of the temporal evolution. The
approach described by Berardino et al. (2002) begins
with unwrapped interferograms, and assumes that
they have been tied to some stable reference point
to define a common phase bias. This approach is a
pixel-by-pixel algorithm at its core (important for
computational purposes), but they apply subsequent
spatial and temporal filtering to provide cleaner time
series. An SVD or principal component approach
may also be useful to isolate atmospheric signals in
large InSAR time series from spatially and tempo-
rally coherent deformation fields (Ballatore, 2006).
Examples of models using large time series of
InSAR data include deformation at volcanoes
(Lundgren et al., 2001, 2004), in the Santa Clara
Basin (California) (Schmidt and Burgmann, 2003),
in the Los Angeles Basin (California) (Lanari et al.,
2004a), and faulting in the Asal Rift (Djibouti)
(Doubre and Peltzer, 2007).

As with GPS data, an alternative approach to
time-series modeling involves explicit use of a phy-
sical model. For example, Pritchard and Simons
(2006) studied time-dependent postseismic slip and
seismic slip on the subduction zone megathrust in
northern Chile assuming a simple model of time-
dependent slip on a fault plane, and imposing
Laplacian smoothing in time in order to tie together
unconnected groups of interferograms. Alternatively,
they could have used a Kalman filter approach, ana-
logous to the ENIF approach used with GPS data;
however, the number of interferograms available did
not support the increased complexity of the modeling
approach. Of course, the mechanical modeling
approach benefits directly from the availability of
any additional temporally continuous data such as
can be provided by GPS observations.
3.12.4.5 Vector Displacements

Another form of stacking can be useful when data
from multiple viewing geometries are available. In
particular, we may want to (1) compare geodetic
imaging data directly with other single-component
geodetic data, such as leveling or electronic distance
measurements (EDM), without going through a phy-
sical model, (2) get a better grasp on what are purely
vertical versus horizontal displacements, (3) as in the
single-component stacks described above, combine as
many images of the geophysical event to reduce
noise and look for unexpected (undiscovered) pro-
cesses, and (4) reduce the total amount of data used in
a parameter estimation task. In these cases, it may be
useful to combine displacement images from three or
more viewing geometries to construct the best esti-
mate of the east, north, and vertical displacement
field. The input data need not be homogeneous in
type. For instance, one could combine right-looking
images from ascending and descending orbits and
pixel offset estimates from one or more tracks to
resolve the full 3-D displacement field (Fialko et al.,
2001a, 2005). Similarly, one could use observations
from different overlapping beams of adjacent orbital
tracks (Wright et al., 2004). The whole system would
then be weighted by the covariance W described in
the previous section. If sufficient data are available,
then one can explicitly include estimation of ramp
parameters, which as before, are best constrained if at
least a few independent geodetic observations are
available. Estimates of the full 3-D coseismic displa-
cement field exist for several earthquakes including
the 1999 Mw 7.1 Hector Mine earthquake (Fialko
et al., 2001a) and the 2003 Mw 6.5 Bam earthquake
in Iran (Fialko et al., 2005; Funning et al., 2005)
(Figure 21). With respect to future mission design,
Wright et al. (2004) points out the reduced sensitivity
of 3-D deformation maps to north–south motions for
missions with near-polar orbits.

While we may not need to explicitly make 3-D
decompositions of the displacement fields, having
multiple components of the displacement fields are
clearly important to constrain physical models such
as earthquake and volcano source models (Fialko
et al., 2001b; Lohman et al., 2002). For example, for
all earthquake models, when only one LOS compo-
nent is observed, there will be a tradeoff between the
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amplitude and rake of the fault slip. This tradeoff will

be further exasperated for small earthquakes if one

does not know the location well (Lohman et al., 2002).
Generally, we note that it may be dangerous to over-

simplify the problem by assuming a priori that the
deformation field is either purely vertical or purely

horizontal in nature. For instance, in large strike-slip

systems, there is a temptation to assume that the
near-fault displacement field is purely fault parallel.
However, even the largest strike-slip systems fre-

quently have vertical or fault normal deformation

associated with them that is either tectonic in origin
(e.g., Klinger et al., 2005) or due to hydrologic effects

associated with faults acting as flow barriers (Bell
et al., 2002). The presence of any vertical displace-

ments is particularly problematic, given the high

sensitivity to vertical deformation in most InSAR
data. Indeed, any ignored vertical displacement will
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corrupt estimates of the horizontal displacement,
where the amplitude of this corruption is amplified
by at least 1/tan �, where � is the angle of incidence.
This effect increases as the fault strike approaches the
azimuth of the orbital track.
3.12.4.6 The Luxury of Sampling –
Rationale and Approach

Geodetic imaging can produce a very large number
observations – of order 106 pixels. In many cases, one
wants to use these observations to constrain para-
meters from a mechanical model, such as distributed
fault slip in an elastic space. In practice, the computa-
tional expense of the inverse problem can be
computationally bound by the number of Green func-
tions one need calculate. In the case of linear problems
where the source geometry is known, the Green func-
tions may not be known analytically (e.g., as with 3-D
variations in material properties) or one may still want
to impose nonlinear constraints, both of these require-
ments can be expensive to implement. Even worse, for
nonlinear problems, such as when we do not know the
geometry of the source, then we must recalculate the
Green functions at each iteration.

Having spatially continuous observations provides
us the opportunity to use a selected subset of these
observations. This possibility leads to the question of
the optimal subset of observations to pick. It is most
precise to view this problem as spatially variable aver-
aging and sampling. Proposed approaches fall in two
classes: in the first, the image sampling is done based on
properties of the data themselves ( Jonsson et al., 2002;
Simons et al., 2002), and in the second, the sampling is
controlled by the character of the model (Lohman and
Simons, 2005). Jonsson et al. (2002) and Simons et al.

(2002) proposed similar approaches that rely on succes-
sive subdivision of the deformation image. In both
approaches, the image is cut into quadrants and a low-
order best-fit surface is removed from the phase field in
each quadrant. For a given quadrant, if the residual is
greater than a prescribed threshold, the quadrant is
further divided into four new quadrants, with the pro-
cess allowed to continue until a minimum quadrant size
is reached. For both approaches, one should then use
the mean (or median) of the pixels in the quadrant and
assign the value to the center of the quadrant. Jonsson
et al. (2002) and Simons et al. (2002) differ in that the
former considers the residual after removing the mean
from each quadrant, why as the latter removes a bilinear
function. Both approaches work well, but for the same
number of points, the Simons et al. (2002) approach does
a better job at constraining a given fault slip model.
Underlying the Simons et al. (2002) approach is the
recognition that any physical model can at a minimum
produce a linearly varying displacement field, and thus
the ability to constrain detailed behavior of a given
model lies in the curvature of the deformation field. In
essence, we are attempting to choose a data set that
includes as many points as possible while maintaining a
nearly diagonal data resolution matrix. Both of these
approaches are limited by the inherent noise in the
observations, and can give spurious regions of high
sampling (e.g., far away from a target fault) if there are
unwrapping errors or regions of decorrelation.

An alternative approach to image sampling
involves using a best-guess initial model parametri-
zation (Lohman and Simons, 2005). A given linear
model can be written as Gm¼ d, where G is the design
matrix, m is the vector of model parameters, and d is
the vector of observations. This has a generalized
solution mest¼G�gd, where G�g is the generalized
inverse and the model and data resolution matrices, R

and N, can be written as R¼G –g G and N¼GG –g

(e.g., Menke, 1989). Lohman and Simons (2005) pro-
pose to find a distribution of samples that has the
most points while keeping N nearly diagonal. The
algorithm is similar to that of Simons et al. (2002) and
Jonsson et al. (2002) in the use of successive division
into quadrants, with the difference being that at each
stage, an estimate of N is made, and refinement stops
when N becomes sufficiently nondiagonal. As with
the other approaches, for any given quadrant, this
approach uses the weighted mean (or median)
value, where the weight takes into account the pixel
variances and covariances. This approach is ideal if
one has a reasonable first guess at the model geome-
try. It is of course also sensitive to the assumed model
parametrization – in this case the size of each fault
patch. Regardless, all these schemes permit one to
constrain models with about 1% of the original data
without significant loss of information. It is worth
emphasizing that even where the final sample spacing
is large, the data variance will be relatively low, since
more points go into this estimate than in regions of
finer spacing, thus information is not lost.

These spatially variable averaging/sampling
approaches are particularly important when model-
ing shallow sources with the potential of causing
complex deformation patterns. A common example
of this class of problems comes from shallow earth-
quakes. Figure 22 demonstrates the difference in
sampling patterns that result from the different
approaches described here. This figure also
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demonstrates the difference in the ensuing model
resolution. The choice of algorithm clearly impacts
the ability to distinguish variations in the shallowest
parts of the model (Lohman and Simons, 2005).
3.12.4.7 Decorrelation as Signal

Interferometric temporal decorrelation is usually
viewed at least as a nuisance and sometimes as a
complete barrier to making useful displacement
measurements. However, in some cases, the spatial
distribution of decorrelation, as well as its temporal
evolution, can serve as useful indicators of geologi-
cal processes. There are many causes of temporal
decorrelation that are not necessarily of interest,
among these are the impact of weather-related pro-
cesses (rain, snow, etc.). Of more interest is
decorrelation caused by rearrangement of the scat-
terers within a pixel associated with intense shaking,
damage, etc. Examples of the use of such decorrela-
tion include mapping of active lava flows (Zebker
et al., 1996), as well as near-fault decorrelation near
shallow earthquake ruptures in the 1995 Kobe,
Japan earthquake (Rosen et al., 2000), the 1999
Hector Mine, California earthquake (Figure 23;
Simons et al., 2002), and the 2003 Bam, Iran earth-
quake (Fielding et al., 2005). This latter form of
decorrelation has been found to clearly outline
fault traces that slip in earthquakes and can serve
as an obvious way to constrain surface fault geome-
try, and so should be used to guide postearthquake
field studies. In general, InSAR decorrelation
images provide a synoptic view of the spatial extent
(along-strike and cross-strike) of faulting that is not
easily achieved from the ground.

A more important potential societal benefit of
decorrelation measurements is their use immediately
after an earthquake, landslide, or eruption to map out
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regions of damage (e.g., Fielding et al., 2005).

Frequently, existing communication systems are

incapacitated by the event, and local inhabitants are

not able to report the level of devastation. Rapidly

made decorrelation maps produced during or soon

after the event could be used to guide emergency

response.
The usefulness of a decorrelation map is limited

by ‘uninteresting’ sources of decorrelation not asso-

ciated by the event. In particular, all forms of

temporal decorrelation, especially if not monotonic,

can mask the correlation image. Obvious examples

include rain, snow fall, and vegetation changes occur-

ing during the time span of the image pair. The most

important ways to improve the usefulness of decorr-

elation measurements include rapid revisit times to

limit the possibility of extraneous processes and the

use of long-wavelength InSAR (e.g., L-band as

opposed to C-band).
3.12.5 The Link between Science
and Mission Design

InSAR and other space geodetic techniques are pri-

marily designed to measure the displacement of

Earth’s surface over time. The particular character-

istics of the measurements are tied to the specific

implementation of the InSAR instrument and the

mission characteristics. Clearly, there is a close link
between the science that can be done with an InSAR

mission and the design of that mission. It is important

for the research community to understand this link in

order to accomplish their goals. A simple example of

this would be avoiding the use of data from a mission

that provides an image over an area once per month,

when the phenomenon of interest has changes that

occur on timescales of days. In this section, we
describe the flow from scientifically driven measure-

ment needs to the basic parameters of an InSAR



426 Interferometric Synthetic Aperture Radar Geodesy
mission. With such an understanding, it is then pos-
sible to characterize the performance of existing
missions and productively discuss the design trades
for future systems.

It is worth stating that InSAR measurements are a
poor proxy for what scientists really would like to
know about geophysical systems. The desired star-
ting point to address larger geophysical questions –
for example, what are the mechanics of earthquakes
and how do fault systems interact? – would be mea-
surements of the state of the crust, its pressure,
temperature, and distribution of material properties
throughout medium, to use as input to geophysical
models. These in situ measurements at depth are
impossible to obtain, so scientists model them
through observations of the motions of Earth’s sur-
face. So it is important initially to understand the
sensitivity relationship between model parameters
and surface displacements. For example, if any rea-
sonable change in a model parameter changes the
modeled surface displacement by 1 mm, there is lim-
ited value in measuring deformation to only 1 cm
accuracy.

So the question arises: what can we reasonably
expect to measure with an InSAR system, and con-
versely, what is required of that system in order to
advance science? A repeat-pass InSAR system mea-
sures the range displacement of any image element
through a differencing of the phase from one epoch to
another. Using a time series of observations, a repeat-
pass InSAR system measures a spatial distribution of
range displacements in discrete time intervals. To
use InSAR displacement measurements in geophysi-
cal models, the measurements must have adequate
displacement accuracy, both absolute and relative,
spatial resolution, spatial coverage, and temporal
sampling. These requirements differ for each specific
scientific investigation.

For a given system, we have seen that the accu-
racy of the range displacement measurement is
determined by noise induced by decorrelation of
the radar echoes, by random phase delays introduced
by propagation effects through the time-variable
atmosphere, and by systematic knowledge uncertain-
ties in the radar path delays and orbit. In addition, the
incidence angle and azimuth angle of the observation
can affect the accuracy of the measurement greatly;
measuring a horizontal displacement with a system
that looks steeply down toward nadir is not desirable.

As described earlier, decorrelation is comprised of
principally three components: thermal decorrelation
is related to the noise level relative to the signal level
of the radar system; geometric decorrelation is
related to the arrangement of scatterers on the sur-
face and how they change with differences in time or
viewing geometry; and other decorrelation terms that
derive from noise (e.g., quantization, ambiguities,
sidelobes) that is dependent on the signal level itself.
There is a strong functional dependence of these
decorrelation terms on system parameters such as
power, antenna size, wavelength, etc., and great inter-
play among them.

The range resolution of a SAR system is inversely
proportional to waveform bandwidth. The required
range resolution is usually set by the scale size of the
ground feature that is being mapped. For InSAR
systems, however, there is a relationship between
system bandwidth and desirable interferometric
baselines. Finer resolution implies less decorrelation
due to nonzero baselines. Thus, even if the final map
resolution desired is only 100 m, one might require a
system to have 10 m resolution in range so that the
constraints on the repeat-orbit accuracy are
manageable.

The along-track resolution of a conventional strip
map SAR system is equal to half the along-track
length of the antenna, independent of range and
wavelength. This is illustrated schematically in
Figure 24, in which the antenna size is grossly exag-
gerated in size relative to the antenna beam width
and the range, so that the salient characteristics can
be viewed on a single page. The resolution along-
track is determined by the spread in frequency con-
tent a given surface element experiences as the SAR
beam illuminates it. Because of its beam width, the
radar signal experiences Doppler shifts across its
beam, such that the received echo contains a spec-
trum of information. The beam width is given by
�D¼ �/L, where � is the wavelength of the radar
tone and L is the length of the antenna along-track.
The frequency bandwidth associated with the
Doppler shifts within this beam width is given by
�fD,t¼ 2v�D/�¼ 2v/L. In spatial coordinates, the
spatial frequency bandwidth is �fD,x¼ 2/L, which
implies a resolution of L/2. Thus, while wavelength
and antenna length determine the beam width of the
antenna, the spatial frequency content is not depen-
dent on the wavelength in SAR.

For ScanSAR systems the resolution is deter-
mined by the length of the burst of pulses in a given
scan, which is generally related to the number of
ScanSAR beams. For spotlight SAR systems, the
resolution is determined by the length of time over
which the observation is made.
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In addition to the thermal noise present in a radar
system, there are a number of noise sources that play a

significant role in the design of a radar and the accuracy

one can expect to achieve for InSAR displacements.

SAR systems point to an angle off nadir to avoid echoes

from both sides of the nadir track: such echoes would be

ambiguously combined in the SAR receiver and could

not be distinguished from each other. Even with off-

nadir pointing, the transmitted and received energy

cannot be completely localized in time as the signal

spreads throughout the illumination area, resulting in a

wide range of time over which a given echo can return

(as well as some energy from the opposite side of nadir

in some cases). Because the radar transmits pulses of

energy over 1000 times per second for typical space-

borne systems in order to properly sample the Doppler

spectrum, it can often occur that energy from time

intervals outside the area of interest defined by this

sampling rate, for example, from a previous or later
pulse, arrives at the receiving antenna at the same time

as the desired echo energy. These corrupting echoes,

generally occurring at much lower amplitude, are

called range ambiguities. The magnitude of these are

controlled by the pulse rate – generally lower pulse rate

allows more time to collect all echoes from a pulse –

and by shaping the illumination area by manipulating

the shape of the antenna pattern.
On the other hand one cannot lower the pulse rate

below the point where the along-track pulses become

undersampled. As we have seen, to create a narrow

Doppler spectrum, we desire a long antenna in the

along-track direction. Physical constraints on the size

of the flight system, as well as a common desire for

reasonably high resolution, limit this size, and there-

fore limit the minimum pulse rate. The illumination

pattern in the along-track direction also has extent

beyond the nominal beam width (antenna sidelobes),

so the pulse sampling rate will naturally cause
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aliasing of some energy from beyond the along-track
antenna main beam extent.

To first order, then, if a wide swath is desired, then
a low pulse rate must be chosen to allow enough time
between pulses for the received echo to be unam-
biguously acquired. This then requires that the
Doppler bandwidth, and hence the antenna beam
width, be narrow, which then mandates a long
antenna in the along-track direction. Furthermore,
the antenna must be limited in size in the elevation
direction to create a wide-enough beam to receive
energy from the wide swath of interest.

For a particular spacecraft altitude, the swath size
is determined by these ambiguity constraints for most
practical spaceborne systems. As the radar antenna of
fixed beam width is pointed at greater distances off
nadir, the swath illuminated on the ground becomes
broader from projection effects, but the usable swath
extent is usually narrower because of ambiguities.
This then means that the antenna must be larger in
the elevation dimension to limit the swath to main-
tain performance.

These effects then influence mission design for an
InSAR system. Scientists studying deformation want
to be able to observe any point on the Earth at some
regular interval. They also would like rapid repeat
coverage to be able to track rapid changes of the
Earth. Suppose the mission requirement is to repeat
an orbit every 8 days. For exact repeat, this requires
an integer number of orbits in this time. There is an
8-day repeat polar orbit at about 760 km altitude that
contains 115 orbits in 8 days. This then implies that
the separation of the orbit tracks at the equator will
be 2�6378/115� 340 km. Thus, the SAR must be
able to cover 340 km of swath, either all at once
with a very wide swath from a very long and skinny
antenna (giving very low resolution), or using multi-
ple smaller beams with smaller swaths covering
different angles off nadir at different times.
ScanSAR, where the radar sends a collection of
pulses illuminating one subswath, then electronically
steers the antenna to the next subswath off nadir and
sends the next collection of pulses, and so on with
multiple beams, allows full coverage of the wide
swath in one pass again, at the expense of resolution,
and somewhat degraded ambiguity performance.

These design space possibilities – frequency, reso-
lution, antenna size, orbit altitude and control, system
power, viewing angle, repeat period, observation mod-
ality – are the playground of scientists, working with
system designers, to optimize a mission to capture
meaningful geophysical signals in the presence of the
noise sources that are present in radar measurements.
Space faring nations are increasingly relying on SAR
and InSAR for scientific discovery and monitoring,
with the trend moving away from large multimode
systems to simpler instruments that do a few things
well. One of these missions will no doubt be dedicated
InSAR mission, a true geodetic instrument in the
model of GPS, but with global reach and dramatically
improved denser coverage of the Earth.
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Appendix 1

Radar Imaging

The power of radar interferometry for geodesy stems
from its high-resolution images that are generated
from a controlled coherent light source. The coher-
ence of the measurements ensures that the phase
associated with each complex image element con-
tains both the round-trip geometric path length
from the radar sensor to the surface and back, and
the ensemble phase associated with the coherent
summation of scattering within the image element.
The imaging process is quite involved and is
described in detail in many other places, for example,
Elachi (1988), Raney (1998), and Franceschetti and
Lanari (1999). However some basic description of the
process will frame the discussion of interferometry.
This appendix is a compilation of the basics from a
variety of sources, and is designed to cover all the
essentials for understanding radar images, and their
phase, in one convenient narrative.
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The most common radar waveform in civilian
spaceborne radars is ‘chirp’ coding:

f tð Þ ¼ A cos !0t þ Br

2	p
t 2

� �
rect

t

	p

� �
½54�

This waveform is transmitted typically over 1000
times per second and its echo is received, digitized,
and transmitted to a recorder. The presence of a
point target on the ground surrounded by a surface
with no inherent reflectivity causes the radar system
to respond with the following received signal:

r t ; Rð Þ ¼ p Rð Þg Rð Þcos !0 t – 2R=cð Þ þ 1

2

Br

	p
t – 2R=cð Þ2

� �

� rect
t – 2R=c

	p

� �
½55�

where for now, p(R) and g(R) are generic functions to
represent 1/R2 loss in power and backscatter at R,
respectively. They will be defined with greater spe-
cificity shortly. Note if we think of the radar as a
system, the point target can be thought of as a delta
function input, implying that r(t, R) would be the
system impulse response.

If numerous point targets are arranged in range,
then the total received signal at any given time will

be the sum of point-target returns over these ranges:

r tð Þ ¼
Z

R

p Rð Þg Rð Þcos !0 t – 2R=cð Þ þ 1

2

Br

	p
t – 2R=cð Þ2

� �

� rect
t – 2R=c

	p

� �
dR ½56�

This equation states that the received signal is the
convolution of the ground backscatter, modulated by

the geometric decay in power with range, with the

transmitted chirp. Viewing the transmitted chirp as

the radar system impulse response, this equation is a

typical expression for the output of a linear system

driven by p(R)g(R).
The response of the radar to the presence of a line

of scatterers in range, represented in its complex-

valued form rz(t), is

rz tð Þ ¼K

Z
t 9

p t 9ð Þg t 9ð Þej !0 t – t 9ð Þþ1
2 Br=	pð Þ t – t 9ð Þ2ð Þ

� rect
t – t 9

	p

� �
dt 9 ½57�

where K is an arbitrary constant and t9¼ 2R/c. The
convolution of the surface with the chirp smears out
the information from any given scatterer over the
extent 	p. The goal is to recover the original g(t9)
from rz(t).
Matched filtering

Suppose

p t 9ð Þg t 9ð Þ ¼ g0ej !0 t 9 – 2kR0ð Þ� t 9 – t0ð Þ ½58�

where R0¼ ct0/2, implying there is a single-point
scatterer on the ground at range R0. In the radar
receiver, normally one of the first hardware functions
is to essentially remove the rapidly varying phase
term exp(j!0t9) by a process called ‘heterodyning’.
The received signal is multiplied by a reference
signal exp(�j!90t9), with !0�!90 so the narrowband
received signal (the bandwidth is B�!0) is near zero
frequency, in the so-called ‘video band’. (In practice
there can be several stages of filtering and hetero-
dyning to achieve the video signal, and often it is
arranged so the spectrum of the real signal has its
positive and negative frequencies symmetrically
arranged around zero, each centered at B/2 and
�B/2, respectively.) For our purposes, we let
!0¼!90, so that

p t 9ð Þg t 9ð Þ ¼ g0e – j2kR0� t 9 – t0ð Þ ½59�

with the understanding that the ‘carrier’ has been
removed. Then

rz� tð Þ ¼ g0e – j2kR0 ej 1=2ð Þ Br=	pð Þ t – t0ð Þ2 rect
t – t0

	p

� �
½60�

¼ g0e – j2kR0 h t – t0ð Þ ½61�

Since rz� is the response of the radar to an impulsive
‘signal’ source (i.e., the ground), we recognize

h tð Þ ¼ ej 1=2ð Þ Br=	pð Þt 2

rect
t

	p

� �
½62�

as the impulse response of the radar system. For this
system, h is just the transmitted signal. The Fourier
Transform of h is known as the system transfer func-
tion H(!). One of the properties of Fourier
transforms is that the convolution of functions in
the time domain is equivalent to the product of
functions in the frequency domain

rz tð Þ ¼
Z

g t 9ð Þh t – t 9ð Þdt 9 $ Rz !ð Þ ¼ G !ð ÞH !ð Þ ½63�

Since we are interested in recovering g() from rz(),
it is clear that if we can multiply Rz(!) by the
reciprocal of H(!), the inverse Fourier transform
will retrieve g(). It turns out that H(!) is of the
form

H !ð Þ � ej�!2 ½64�
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Figure 25 Illustration of the matched filter concept,
where a signal in noise is optimally detected by passing it

through a filter matched to its characteristics. In our case

s(t) is what we called the impulse response of the radar

system h( ).
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Figure 26 Illustration of the matched filter for the delta-
function scene and linear FM chirp. The compressed signal
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which implies Rz(!)H �(!)¼G(!), that is, we can
filter rz with the conjugate spectrum of the impulse
response to recover g.

This specific result is a special case from matched
filter theory, where an optimal filter is designed to

best detect a transmitted waveform in the presence of

noise (Figure 25). The matched filter of a signal s(t)

has an impulse response

hm tð Þ ¼ s� – tð Þ ½65�

In our case, s () is what we defined as radar impulse
response h (), so hm(t)¼ h�(�t). Thus the recovered,
or ‘compressed’, signal rzc for our delta function is
given by

rzc tð Þ ¼
Z

rz t 9ð Þhm t – t 9ð Þdt 9 ½66�

rzc� tð Þ ¼ g0e – j2kR0

Z
h t 9 – t0ð Þhm t – t 9ð Þdt 9 ½67�

¼ g0e – j2kR0

Z
h t 9 – t0ð Þh� t 9 – tð Þdt 9 ½68�

So we see that convolution with the matched filter is
equivalent to correlation with the conjugate of the
function itself. This makes some sense intuitively, in
that as we slide the filter along our received signal
and integrate, they will match best and give the high-
est integral when they are aligned with lag t¼ t0 and
when all phase terms are cancelled, making the inte-
grand always positive. Since the Fourier transform of
h�(�t) is just H �(!), we see that the result above
considering the specific form of h in eqn [64] is
actually a more general result. Namely, we can in
general filter rz with the conjugate spectrum of H to
retrieve g, or equivalently (Figure 25),

rzc tð Þ ¼
Z

rz t 9ð Þe – j 1=2ð Þ Br=	pð Þ t 9 – tð Þ2 rect
t 9 – t

	p

� �
dt 9 ½69�

Expanding eqn [68], we have
rzc�ðtÞ ¼ g0e – j2kR0

Z
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If we ignore the rect functions, and assume infinite
integration limits, the integration becomes fairly
straightforward because the quadratic phase terms
involving the integration variable cancel:

rzc� tð Þ ¼ g0e – j2kR0 ej 1=2ð Þ Br=	pð Þ t 2
0 – t 2ð Þ

�
Z

e – j Br=	pð Þ t 9t0ð Þej Br=	pð Þ t 9tð Þdt 9 ½71�

¼ g0e – j2kR0 ej 1=2ð Þ Br=	pð Þ t 2
0 – t 2ð Þ

Z
ej Br=	pð Þt 9 t – t0ð Þdt 9 ½72�

¼ g0e – j2kR0 e – j 1=2ð Þ Br=	pð Þ t 2 – t 2
0ð Þ� t – t0ð Þ ½73�

So we see that we exactly recover the delta function
with an infinite bandwidth signal and impulse response.
If we were to leave the impulse response bandwidth
infinite but apply the windowing of the received signal,
then the integration limits above are limited to the
pulse extent 	p, and we obtain the usual sinc result:

rzc� tð Þ ¼ g0e – j2kR0 e – j 1=2ð Þ Br=	pð Þ t 2 – t 2
0ð Þ sin� B t – t0ð Þ

�B t – t0ð Þ ½74�

where B¼ Br/2� (Figure 26). The first null is at the
expected location of 1/B, defining the resolution of
the compressed signal (Figure 26).

When both rect functions are considered in the
integral, the quadratic phase term cancels and the

sinc function is modified. The integration is carried

out in three regimes as shown in Figure 27.
Using these limits,

rzc� tð Þ ¼ g0e – j2kR0 rect
t – t0

	p

� �
sin � B t – t0ð Þ 	p – t – t0j j

� 	
�B t – t0ð Þ

½75�

When t� t0� 	p this reduces to the usual expression
without the quadratic phase:

rzc� tð Þ � g0e – j2kR0
sin� B t – t0ð Þ
�B t – t0ð Þ ½76�
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Figure 27 The three regimes of integration as the windowed received signal and matched filter have zero, postive and negative

lag. Modified from Franceschetti G and Lanari R (1999) Synthetic Aperture Radar Processing. Boca Raton, FL: CRC Press.

Figure 28 Radar imaging as viewed looking down at the

Earth from above the sensor. The sweep of the pulse across

the radar beam leads to a return echo trace for each pulse

as depicted on the left. Every IPP, a pulse is sent and a trace
recorded. The collection of pulses, that is, the along-track

history of range profiles, is therefore a 2-D representation of

the surface, albeit poorly resolved. There is considerable

redundant information for any given surface element in the
pulses because the beam samples each point many times

as it travels along track (e.g., pulses every 5 m observed

over a beam extent of 5 km). Through matched filtering
techniques, a fine resolution image of the surface can be

generated.

ΔR
dz = ΔR/tan(θi)

dg = ΔR/sin(θi)
da = Rdϕ

Figure 29 Depiction of a cell in range defined by two

phase fronts separated by range distance �R. This could be

the transmit pulse length in range units, for example.
Modified from Raney RK (1998) Radar fundamentals:

Technical perspective. In: Henderson FM and Lewis AG

(eds.) Manual of Remote Sensing Volume 2, Principles and

Applications of Imaging Radar, 3rd edn. Hoboken, NJ:
J. Wiley.
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Radar signal return from a 3-D surface

We examine what comprises p() and g() in eqn [57] in

an imaging radar system looking at the Earth, where

we do not necessarily have a neat line of scatterers

arranged in range. Instead we have a spatial distribu-

tion of scatterers within the beam on a 3-D

topographically modulated surface (refer back to

Figure 2 for the SAR imaging geometry). The

receive echo will integrate over the azimuth direc-

tion and the range pulse at any instant. For a real

aperture radar, that is one for which the resolution in

azimuth is dictated by the beam width of the antenna,

the point-target concept extends to an integrated

backscatter value over azimuth g9(R) and the same

arguments and equations for the simple point targets

described above are obtained.
Figure 28 shows the imaging scenario looking

down on the Earth from above the sensor. This

more clearly shows that the received echo energy at

any given instant within the pulse will effectively be

the integrated return from every scatterer within the

instantaneous pulse extent on the ground in range

and azimuth, weighted by the transmitted chirp

waveform. Because the chirp signal is extended in

range, the response from any given scatterer is also

extended in range. Variations in range relative to a

nominal flat surface within the beam induced by

topography or surface relief will lead to geometric

distortion in the range trace: the measurement is

fundamentally an integration (convolution) over

phase fronts (i.e., constant range).
Being more specific about the function g(), follow-

ing Raney (1998), we define the geometry of the

phase front incident on a elemental surface with

reference to Figure 29. The surface element is like

the facet model, bounded in range by a distance �R,

and presents a cross-sectional area normal to the

incident wave of da dz, where da¼ R d� and

dz¼�R/tan �, where � is the look angle.
With this definition, we can define the relation-

ship between the normalized back scattering
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cross-subsection �0 and the reflectivity normal to the

look direction:

� a; Rð Þj j2 da dz ¼ �0 a; Rð Þ
sin �

da�R ½77�

This equation defines �. In general, the reflectivity is
a complex quantity, taking into account phases from
random scatterers and differential path delays within
the elemental area.

The received field from this elemental area is then

r tð Þ ¼ P
1=2
T G�

4�ð Þ3=2
R2

� R; �ð ÞR d� dz p � Rð Þ; �ð Þ

� e – j2kRej 1=2ð Þ Br=	pð Þ t – 2R=cð Þ2 rect
t – 2R=c

	p

� �
½78�

At every instant t� 2R/c all the signals that arrive at
the receiver add up. We have constructed the ele-
mental area on the phase front such that an
integration over these elements is at fixed 2R/c.
Thus, we can define the integration over the phase
front to be a function of time that is a generalization
of the range-only function g() studied earlier:

g � Rð Þ ¼ e – j2kR

Z Z
p � Rð Þ; �ð Þ� R; �ð ÞR d� dz ½79�

If the scatterers were all arranged on a single
phase front at range R, then the received signal
would be

r tð Þ ¼ P
1=2
T G�

4�ð Þ3=2
R2

g� Rð Þej 1=2ð Þ Br=	pð Þ t – 2R=cð Þ2 rect
t – 2R=c

	p

� �

½80�

For scatterers arranged over the entirety of the sur-
face, we have an additional integration over all phase
fronts:

r tð Þ ¼ P
1=2
T G�

4�ð Þ3=2
R2

Z
g � Rð Þej 1=2ð Þ Br=	pð Þ t – 2R=cð Þ2

� rect
t – 2R=c

	p

� �
dR ½81�

This is a convolution of the transmitted pulse with
the integrated phase front. The range compression

process (matched filtering) described above returns

to us a record of the total return from phase fronts

resolved in time to 1/B or in range to c/2B. The next

step is to exploit the redundancy in the range signal

as a function of pulse number to build resolution in

the along-track dimension.
Azimuth signal and aperture synthesis

Real aperture radars are very useful for a variety of
applications, generally those which require detection
of a bright object in a broad region as is common in
military applications, or where a low-resolution aver-
aged measure of surface roughness or dielectric is
sufficient. Oceans and ice sheets are generally feature-
less, so high resolution is not often needed. Large-area
estimates of backscatter can be interpreted as wind
speed, for example, on global scales, with the sensor
dealing with only modest amounts of data.

Often, however, especially for land applications,
fine-resolution images are important because the
natural spatial variability of the surface is rapid. So
it would be very nice if we could overcome the
azimuth beam limit on resolution without building
an enormously long antenna. It turns out that it is
possible using the techniques of aperture synthesis.

Returning momentarily to a point target on the
ground, consider a train of pulses transmitted as a
spacecraft travels along a straight line path
(Figure 30) above a flat Earth. The pulse is trans-
mitted and subsequently received at a slightly later
time, but for the purpose of understanding the con-
cepts, we can imagine a ‘stop-and-shoot’ model
where the radar to target to radar distance is 2Ri for
a given pulse i. The transmitted and received pulses
are shown schematically in Figure 30, illustrating the
changing range from pulse to pulse.

In this geometry,

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 þ xi – x0ð Þ2
q

; xi ¼ vti ; ti ¼ i PRIþ t0

½82�

where R0 is the shortest range from the flight track to
the target, also called ‘broadside’, and x0 is the azi-
muth at that location. Thus the phase factor we have
been carrying along for a return from a broadside
pulse, exp(�j 2kR0), must now be updated from pulse
to pulse. After demodulation and range compression,
the received signal from a point target for pulse i is

rzc�;xi
tð Þ ¼ g0p xi – x0ð Þe – j2kRi xið Þ sinc �B t – tið Þf g ½83�

where ti¼ 2Ri/c. This is the range-compressed form
eqn [76] with an adjusted range term, and an explicit
function p() denoting the antenna pattern of the radar
antenna. Writing this entirely in terms of range and
azimuth coordinates gives

rzc�;xi
Rf

� 	
¼ g0p xi – x0ð Þe – j2kRi xið Þ sinc

�

�R
Rf – Rið Þ

n o

½84�



x
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R 0

PRI

2R0
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mod( , )PRI
2R1
c
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Figure 30 Illustration of range history in azimuth of the pulsed radar. Ignoring the finite speed of light, the radar can be

thought of as transmitting and receiving from each point on orbit. Because of the finite extent of the azimuth beam, a single

point target on the ground will be seen in a succession of received pulse echoes, with decreasing-to-increasing range

location as the spacecraft flies by.
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where Rf is the range variable, also called ‘fast time’
because it represents the time variation of the signal
across a single pulse, and xi is the azimuth location of
a given pulse, also called ‘slow time’ since it charac-
terizes the slower variation of the range trace from
pulse to pulse.

If the transmitting antenna is length L in azimuth,
then the target will be illuminated for an azimuth

distance (3 dB) of

Xill ¼
�

L
R0 ½85�

The echo field from the point target will be
sampled N¼Xill/�xp times while it is in the beam,

where �xp¼ v PRI is the pulse spacing on the flight
x1 x2 x3 xi

R0

Xill

Xill,eff =         R 0  
2λ
L

Figure 31 Point target illuminated by an antenna of length L. T

propagation introduces a doubling of the range and consequently
track (Figure 31). The field is sampled effectively by a
linear array of identical antennas spaced by �xp. It is
shown in the homework (and any number of books)
that the antenna pattern of a linear array of this sort is
the product of the antenna pattern of the physical
antenna and the array factor. The physical antenna is
small, leading to a broad sinc-like beam in azimuth.
The array factor is also sinc-like, but is much narrower

AF ¼
sin N=2ð Þk�xp sin �
� 	

sin 1=2ð Þk�xp sin �
� 	 ½86�

In the limit as �xp! 0, and for small �

AF ! N
sin k=2ð ÞXill�ð Þ

k=2ð ÞXill�
½87�
xn

Antenna of length L 

he 3dB extent of the beam is �R0/L, but because two-way

the phase, the effective extent of illumination is 2�R0 /L.
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which has the expected 3 dB beam width of
�3 dB¼�/Xill. Thus the sampled linear array in
space serves as a very long antenna of length Xill.
Without careful deliberation, we might conclude that
the resolution in azimuth we could achieve is given
by its effective 3 dB beam extent �X¼ �3 dB R0¼ L;
however, we must take into account the two-way
propagation of the radar signal. The above arguments
are correct for an antenna synthesized to illuminate
an area at range R0. However, since 2R0 is the actual
distance propagated, we can think of the beam extent
for illumination as actually at twice the distance, that
is, the phase variation across the aperture is as if the
antenna were at twice the distance. Thus,

Xill; eff ¼
�

L
2R0 ½88�

and the resolution allowed by an antenna of this
length is

�X ¼ L=2 ½89�

This remarkable result states that the resolution of a
synthetic aperture system is independent of range and

velocity, and is just half the physical antenna length. As

the range is increased, the synthetic aperture increases

in length and the angular extent of synthetic beam

narrows in proportion to maintain fixed resolution. If

the physical antenna decreases in size for a fixed range,

the illuminated area increases, increasing the synthetic

aperture and narrowing the synthetic beam width.

Since the range is fixed, the resolution becomes finer

in proportion to the reduction in L.
Consider Ri as a continuous variable of the azi-

muth coordinate

R xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 þ x – x0ð Þ2
q

½90�
F

X 0

Figure 32 Illustration of the Fresnel zone, where the phase fro
across the zone (right). Symmetric chirp at left is the real part of

Fresnel zone. The synthetic array is coherent over this length an

will be resolved at this length.
� R0 1þ x – x0ð Þ2

2R2
0

� �
½91�

� R0 þ
x – x0ð Þ2

2R0
½92�

The constant phase term exp(�j2kR0) is very dif-
ficult to measure absolutely (billions of cycles), so for

now we will ignore it and focus on the spatially

varying component of the phase

e – j2k x – x0ð Þ2=2R0 ¼ e – j� x – x0ð Þ2=F 2 ½93�

where F2¼�R0/2. F is known as the Fresnel zone and
it is the distance along the synthetic array where the
wave front is within �/4 radians of phase (see
Figure 32). Typical Fresnel zone size is on the
order of 100–200 m. Since the array is coherent over
this length, points simply summed together in azi-
muth will add coherently and form a meaningful,
albeit low-resolution representation of the surface
in azimuth:

�
x – x0ð Þ2

F 2
<
�

4
! x – x0 <

F

2
½94�

The range-compressed pulse history can now be
written as

rzc� xi ; Rf

� 	
¼ g0p xi – x0ð Þe– j2kR0 e– j� x –x0ð Þ2=F2

�sinc
�

�R
Rf – R0 þ

xi þ x0ð Þ2

2F 2

� �� � �
½95�

where we explicitly call out the functional depen-
dence on xi in the argument to rzc�.

The form of the azimuth signal is rather similar to
the range signal before compression. Using the same

approach to recover the point target in azimuth, we

can define a matched filter in azimuth that is a similar

conjugate chirp signal:
F

Phase fronts

m an incident wave front varies by less than �/4 radians
the azimuth chirped phasor. It is nearly constant over the

d points simply summed in azimuth will add coherently, and
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ham xð Þ ¼ h�a – xð Þ ¼ p – xð Þej�x2=F2 ½96�

The doubly compressed point-target signal is then

rzcc� x; Rð Þ¼ g0e – j2kR0 sinc
�

�R
R – R0½ �

n oZ
p x9 – x0ð Þ

� e – j� x9 – x0ð Þ2=F 2

p x9 – xð Þe j� x9 – xð Þ2=F2

dx9 ½97�

where we ignored the x-dependent term in the
range sinc function because processors generally
take care of this term before performing the
matched filter in azimuth. If we allow p () to be a
rect-function of extend Xill as we did for range, then
we will obtain exactly the same expression as we did
for range, and the doubly compressed point-target
signal becomes

rzcc� x; Rð Þ ¼ g90e – j2kR0 sinc
�

�R
R –R0½ �

n o

� sinc
� x – x0ð ÞXill

F 2

 �
½98�

Since in this case we explicitly took into account the
two-way propagation in the phase, Xill is the actual
illuminated extent, not the double-length effective
extent used in the heuristic argument earlier. The
first null of the azimuth response is where

x – x0 ¼
F 2

Xill
½99�

¼ �R0=2

�R0=L
¼ L

2
½100�

We take this as the 3 dB resolution in azimuth, and
we see it is identical to the heuristically derived
resolution.

Expressed in terms of the range resolution
�R¼ c/2B and azimuth resolution �X¼ L/2, the
overall impulse response of the radar system and
matched filtering operations is

rzcc� x; Rð Þ ¼ g90e – j2kR0 sinc
�

�R
R –R0½ �

n o

� sinc
�

�X
x – x0½ �

n o
½101�

For a surface described by a general reflectivity func-
tion in range and azimuth �(x, R) related to the
surface backscatter cross-subsection through eqn
[77], the matched filter response will be the linear
convolution with the impulse response in eqn [101]:

�zcc x; Rð Þ ¼
Z

e – j2kR9� x9; R9ð Þsinc
�

�R
R – R9½ �

n o

� sinc
�

�X
x – x9½ �

n o
dx9 dR9 ½102�
Range-Doppler images

SAR images generated in this style of filtering are

often called ‘range-Doppler’ images. The quadratic

variation of the phase of a point target with time

along track leads to a linear frequency variation:

� tð Þ ¼ –
�

F 2
v2 t – t0ð Þ2 ½103�

! tð Þ ¼ – 2�
v2

F 2
t – t0ð Þ ½104�

fD tð Þ ¼ –
v2

F 2
t – t0ð Þ ½105�

Note the Doppler frequency is positive as the sensor
approaches the target (t < t0). The Doppler band-
width is the totality of frequency content for any
target. This is limited by the beam width in azimuth,
Till¼Xill/v, giving

fD;ill ¼
2

�R
v2 Xill

v
¼ 2v

L
½106�

This is in time units (Hz). In spatial units, fDx,ill¼ 2/L,
which is just the reciprocal of the spatial resolution.

Another way of describing this Doppler
bandwidth is through the Doppler equation

fD¼�2u! ? l̂/�, where u! is the vector velocity of

the sensor, and l is the direction from the sensor to a

point on the ground. At any instant of time, there is

a one-to-one correspondence between the azimuth

position of a target and the Doppler frequency

(Figure 33). The antenna beam illuminates an

area on the ground, with each target at a given

angle off boresight having a unique Doppler fre-

quency. The Doppler frequency can be written as

fD¼�2u cos �az/�, where �az is the angle formed by

the velocity vector u! and the look vector l̂ . Defining

�b.s. as the angle measured relative to broadside

(that is, perpendicular to the velocity vector), and

assuming that the antenna’s boresight is oriented at

broadside, fD¼�2u sin �b.s./�. The total Doppler

bandwidth at that instant is given by the Doppler

frequencies at the edge of the beam. The total beam

extent is then

2�b:s: ¼ Xill=R ½107�

¼ �R= LRð Þ ½108�

¼ �=L ½109�

as expected. Thus, the Doppler bandwidth fD,ill, is
also 2v(2 sin �b.s.)/�¼ 2v/L.

At any given instant, the received signal is com-
prised of the full complement of Doppler frequencies
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Lines of equi-Doppler

Illuminated area
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Figure 33 Range-Doppler coordinates of the surface as

seen by a sensor at an instant of time. Targets in a band of

Doppler frequencies contribute to the signal return. It is up
to the azimuth matched filtering operation to sort out the

targets into unique Doppler bins. Modified from Elachi C

(1988) Spaceborne Radar Remote Sensing: Applications

and Techniques. New York: IEEE Press.
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because targets are distributed throughout the

beam, each with their own Doppler frequency. In

forming the synthetic aperture at some reference

time, we are rearranging each of the targets in the

range-Doppler image to lie at the Doppler frequency

appropriate to that geometry at that reference time

(Figure 33).
To be more explicit, we pick a collection of pulses

that will be used to form our synthetic aperture,

noting that this establishes a position in space at a

time instant as a reference for defining Doppler fre-

quencies. We can also model the ground as a

collection of point targets arranged in azimuth, such

that

rzc�; tot ¼
XN

k¼1

Ake – j� x – xkð Þ2=F2

sinc
�

�R
R–R0 – x – xkð Þ2=2R0

� 	

½110�

For the sake of this discussion, we allow the sinc
function to become a delta function in range and
ignore its variability with x, which is small and cor-
rectable. Thus,

rzc� �
XN

k¼1

Ake – j� x – xkð Þ2=F 2 ½111�
The azimuth compression process can be written
then as

rzcc� xð Þ ¼
Z xþXill=2

x –Xill=2

rzc� x9ð Þe j� x9 – xð Þ2=F 2

dx9

¼
Z xþXill=2

x –Xill=2

XN

k¼1

Ake – j� x9 – xkð Þ2=F 2

e j� x9 – xð Þ2=F 2

dx9

¼ ej�x2=F2

Z xþXill=2

x –Xill=2

XN

k¼1

Ake – j�x2
k
=F 2

� ej2�x9xk=F 2

e – j2�x9x=F2

dx9

¼
XN

k¼1

ej�x2=F 2

Z xþXill=2

x –Xill=2

A9ke – j2�x9 fDx – fk ; Dxð Þdx9 ½112�

where fDx¼ x/F2 is the Doppler spatial frequency.
From this arrangement of terms, we can recognize
that the compressed azimuth signal is just the sum
of Fourier transforms of the individual complex
exponentials of complex amplitude A9k . Because the
argument of the exponential is the Doppler frequency,
we see the transform domain is the Doppler domain,
and each exponential (being representative of a
scatterer at a particular azimuth location xk relative
to the reference location) transforms to an individual
Doppler frequency fk,Dx . Thus for a general conti-
nuous surface, the summation becomes an
integration, and we see the compression process con-
sists of focusing the array by applying a quadratic
phase correction, followed by a transform that sorts
the scatterers into correct Doppler bins for that time
reference.

We represent and execute the imaging as a con-
volution in spatial variables because the processed
data sample spacing is independent of range on
input and output. In the focussing-Fourier-transform
approach, the Doppler sample spacing is controlled
by the implementation of Fourier transform, which is
usually accomplished by fast Fourier transform
(FFT). In this case, if the input data are sampled at
a spacing L/2, the Doppler spacing will be 2/L/N,
where N is the number of points in the FFT.
Other Doppler considerations

If the antenna pattern was isotropic and we have a
continuous time system, the phase and Doppler of a
single point target would be as depicted in Figure 34.
Imposing an antenna pattern where the antenna pat-
tern is pointing ‘broadside,’ that is orthogonal to the
velocity vector, the phase and Doppler history would
be truncated according to the extent of the beam (see
Figure 34).
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Figure 34 Phase and Doppler history over time for a point target. (a) The trace for a system with an isotropic antenna: the

trace keeps going. (b) The finite illumination time of a finite-dimension antenna truncates the phase and Doppler history.

Forward squint

Backward squint

Figure 35 Illustration of forward and backward squint.
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It is most commonly the case that the finite extent
beam is ‘squinted’ forward or backward with respect
to the velocity vector of the sensor. For an aircraft
this is most commonly due to cross-winds causing the
fuselage to crab. For spacecraft, there is a natural
latitude-dependent angular offset between the velo-
city vector of the inertial orbit and the rotating Earth
below, causing a natural squint (Figure 35).

The effect of this squint on the phase and Doppler
history of a target is shown in Figure 36. Note the
shape of the phase or Doppler does not change, just
the range of phases or frequencies considered. Thus,
there is a unique relationship between the pointing
and the location of the scatterers. In processing data,
the extent of the antenna beam (Doppler bandwidth)
and the ‘centroid’ of the Doppler, or the degree of
squint as represented by the center of the Doppler
bandwidth, are specified in one way or another.
Figure 37 shows that the spectra are shifted to be
centered on the Doppler spread associated with a
particular squint. It is important to know the squint
to ensure that the processing is centered on the
proper part of the azimuth spectrum. The centroid
specified in processing defines the direction from
which the ground is imaged after processing.

The squint can be derived from information pro-
vided by the spacecraft and radar manufacturer.
Often spacecraft have sensitive position and attitude
sensors that record the information needed to calcu-
late the direction of the antenna boresight. When this
information is not available, the Doppler centroid
itself can be estimated from the data. This estimated
centroid can be used directly in the processing. The
centroid generally varies across range, so often the
centroid is specified as a function of range.

To understand the arrangement of spectral energy
for a collection of scatterers, consider a collection of
point-target scatterers all at the same range, but at
different azimuths:

rzc�;tot ¼ A0e – j� x – x0ð Þ2=F 2

� sinc
�

�R
R –R0 – x – x0ð Þ2=2R0

� 	
þ A1e – j� x – x1ð Þ2=F 2

� sinc
�

�R
R –R0 – x – x1ð Þ2=2R0

� 	
þ � � �

þ Ane – j� x – xnð Þ2=F 2

sinc
�

�R
R – R0 – x – xnð Þ2=2R0

� 	
½113�

If we ignore the antenna pattern modulation of target
energy and denote the azimuth spectrum of an indi-
vidual scatter response as

F !ð Þ ¼ F:T: e – j�x2=F2

sinc
�

�R
R –R0 – x2=2R0

� 	n o
½114�
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Figure 37 Hypothetical Doppler spectra of broadside, forward and backward squinted signals. For a collection of

scatterers over the beam pointed with a particular squint, all scatterers experience the same Doppler frequency spread, so
the spectra would be as shown, controlled in extent and magnitude by the antenna pattern in azimuth.
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Figure 36 Phase history over time for a point target. (a) The trace for a forward squinted system. (b) The trace for a

backward squinted system. Only phase is shown, but with reference to the previous figures, the Doppler history is similarly

constrained. Forward (backward) squinted systems see more positive (negative) Doppler frequencies.
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where F.T. denotes the Fourier Transform, the spec-
trum of rzc�, tot would be

Rzc�; tot !ð Þ ¼ F !ð Þ A0e – j!x0 þ A1e – j!x1 þ � � � þ Ane – j!xn
� 	

½115�

Thus, except for a phase ramp in azimuth fre-
quency space, all scatterers have the same spectrum.

Clearly, the process of applying the matched filter

neutralizes this common component, and the linear

phase terms in frequency distinguish the targets in

position upon inverse transformation. This again

shows the spatial-Doppler duality. The x depen-

dence of the energy’s localization in range x2/2R0 is

called the ‘range migration’ and is seen to be part of

the function F (!) in the frequency domain. Hence

any effects this may introduce can be dealt with for

all targets simultaneously by manipulating the

spectrum.
We ignored the ‘range migration’ term x – x0ð Þ2=2R0

in the argument to the sinc function in range, but

frequently this is not advisable. The processing of data
on an orthogonal grid is enforced by the need for
high-speed computations, and the most efficient
processing methods are those that are separable in
range and azimuth and for which FFT-based
convolutions can be performed. For broadside ima-
ging, the term can be ignored when X 2

ill =2R0 is a
fraction of the range resolution �R. In other words,
when the migration over the full extent of the azimuth
matched filter (equivalent to the beam extent on the
ground) is smaller than a range-resolution element,
the azimuth matched filter will catch all the energy
for a given scatterer in a single range bin.

The sampled azimuth spectrum and range

migration

Since the range migration correction terms depend
on the Doppler frequency, one must know the cor-
rect Doppler frequency to properly compress the
imagery. This is also true for computing the correct
azimuth matched filter; however, the sampled nature
of the azimuth signal adds an interesting wrinkle to
the processing that is often confusing. Since the
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Figure 38 The azimuth signal is sampled at the PRF. The resulting discrete time signal in azimuth has a circular spectrum

with all energy at frequency higher than the PRF aliased into the circular bandwidth of the PRF. (a) Illustrates the replicas of the

continuous spectrum that are aliased, and (b) the resulting circular spectrum.
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azimuth signals are inherently derived from pulses

acquired along track, the azimuth signal is a discrete

time signal sampled at the PRF. The actual discrete

time spectrum is then a circular spectrum, with all

energy at frequencies higher than the PRF aliased

into the range of one PRF (Figure 38).
Thus without knowledge of the geometry of the

spacecraft and the observation, it is often difficult to

know the actual Doppler centroid, since one usually

estimates it from the spectrum only in the range of

the PRF. One can process the data with an incorrect

Doppler centroid, off by some number of PRFs (also

called ‘ambiguities’) for instance, and the imagery

will look almost correct. Since the signal is sampled,

the matched filter spectrum for the actual centroid

will be the same as for the incorrect centroid as long

as the centroid is wrong by an integer number of

ambiguities. However, the range migration correc-

tion is in terms of absolute Doppler, so if the wrong

ambiguity is used, the images will be poorly focused

in range (because energy is spread in range for each

scatterer) and in azimuth (because the compression

uses incomplete information for each scatterer).
If the attitude of the platform is known, then the

Doppler can be computed from

fD ¼ –
2v
!

? l̂

�
¼ –

2v

�
sin � sin�sq ½116�

where v
!

is the velocity vector, Î is the look vector
from antenna to target, � is the look angle, and �sq is
the squint angle. If the attitude parameters are not
known, then one has to estimate the ambiguity. This
can be done by trial and error – examine the focus for
a variety of integer ambiguity choices – or by one of
several automated techniques. A popular method of
ambiguity estimation is to split the azimuth spectrum
into two pieces and process each with a particular
Doppler ambiguity assumption. If the correction is
the right one, both side bands will be adjusted to the
correct range and the two images produced will be
properly registered in range. If the correction is not
right, there will be a residual shift between the two
images in range. From the magnitude of this shift it is
often possible to estimate the correct ambiguity.
Unfortunately the imagery are lower resolution in
azimuth and defocused in range, so estimating the
shift is sometimes difficult.
Speckle

Radar images are naturally noisy because of the

coherent interaction of the electro-magnetic wave

with scatterers within a resolution cell, known as

speckle. Speckle is an important part of the radar

literature, as it is an important limitation of the ima-

gery that many people have worked hard to

minimize. It is also an important concept for inter-

ferometry, which exploits the spatially fixed

properties of speckle to extract phase differences

between images. The normalized backscatter cross-

section �0 is an average quantity for a naturally

varying random surface. For homogenous surfaces

made up of a continuum of scatterers, the backscatter

cross-section is a measure of the roughness of the

surface and its natural reflectivity, as shown in a

previous section. Viewing the SAR imaging process

as a lens (Figure 39), after imaging, the random

(complex) surface reflectivity is convolved with the

sinc-function impulse response of the imaging sys-

tem, accounting for the random differential path

length introduced by surface roughness.
In a given resolution element, we consider the

sum of the collection of small independent scat-

terers, where each scatterer has its own amplitude

and phase
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Figure 39 Illustration of the concept of radar imaging of a random surface (a) and the coherent sum of independent

scatterers as a phasor (b).
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Figure 40 The real and imaginary parts of a SAR image are circularly Gaussian (left). The amplitude of the SAR pixel is

Rayleigh distributed, with peak at a¼ �.
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aej� ¼
XN

k¼1

�kej�k ½117�

If �k and �k are statistically independent of each
other and �k are identically distributed with mean
�� and second moment �2, and �k are uniformly
distributed in the interval [��, �], then one can
show that for large N

r ¼ a cos � ½118�

i ¼ a sin � ½119�

are Gaussian-distributed zero-mean random vari-
ables with joint probability density function

p RI r ; ið Þ ¼ 1

2��2
e – r2þi2ð Þ=2�2 ½120�

where �2 ¼ �2=2 (Figure 40). The variance of the
real and imaginary parts of the SAR image are related
to the mean power of the intrinsic scatterers but are
zero mean random variables themselves. As such for
homogeneous areas, averaging many complex pixels
together in a region will eventually reduce the signal
to zero on average and not improve the quality of the
image. This is a common mistake among beginners. It
is the amplitude of the image, a, or its intensity
(power), I¼ a2, that interests us.

For the amplitude a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2 þ i2
p

, we can use the
rules of transformation of random variables (multiply

the distribution by the Jacobian of the transformation

and substitute in the new variables) to get the

distribution

pA að Þ ¼ a

�2
e – a2=2�2

; a � 0 ½121�

which is known as the Rayleigh distribution
(Figure 40). The phase is uniformly distributed
over the interval (��, �)

pY �ð Þ ¼ 1

2�
; –� < � < � ½122�

The mean and variance of the amplitude are

�a ¼
ffiffiffiffiffiffiffi
�

2
�

r
½123�

�2
a ¼ 2 –

�

2

� �
�2 ½124�

Clearly the mean amplitude of the image scales with
the variability in the image, which is related to the
mean backscattered power �2 of the scatterers
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comprising the resolution element. The brighter the
image, the noisier the image, and vice-versa. Thus, at
some signal level such that the signal level returned is
sufficiently larger than the thermal noise in an image,
having a more powerful radar does not necessarily
improve image quality.

The intensity, or power, of the image I¼ a2 has an
exponential distribution

pI Ið Þ ¼ 1
�I

e – I=�I ; I � 0 ½125�

with mean and variance

�I ¼ 2�2; �2
I ¼ 4�4 ½126�

The mean power is equal to its standard deviation,
as expected from the mean amplitude scaling with �.

In the display and analysis of an image with only ‘one

look,’ meaning processed at full resolution using the

full synthetic aperture, the SNR of the intensity

image is just I since �I 2=�2
j ¼ 1j the brighter the

image, the noisier. In the design of a radar system,

one must have sufficient power to receive a return

from the surface above the thermal noise (satisfying

the radar equation, where �2 is related to the back-

scattering cross-section), but not so high that we are

wasting power. For interferometry, we will soon see

however that more power in general is better!
The radiometric resolution is defined as the abil-

ity to discriminate surfaces of different brightnesses.

It has been defined to be

Q ¼ 10 log
�I þ �I

�I – �I

� �
½127�

which is something like the distance apart in ampli-
tude of discriminable amplitudes. For a single-look
image, that distance is infinite. In order to improve
this situation, it is often necessary to average
many pixels together. The act of averaging N
r

i
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~ 

Figure 41 (a) A phasor diagram with a bright specular target (

amplitude.
independent (Gaussian, but also approximately
true for non-Gaussian) random variables with iden-
tical distributions reduces the variance by a factor
of N. Thus for

I 9 ¼ 1

N

XN

k¼1

Ik ½128�

we have �I 9 ¼ �I ; �2
I 9 ¼ �2

I =N , and the radiometric
resolution becomes

Q ¼ 10 log
�I 9þ �I 9

�I 9 – �I 9

� �
¼ 10 log

ffiffiffiffi
N
p
þ 1ffiffiffiffi

N
p

– 1

� �
½129�

The resolution distance approaches 0 for arbitra-
rily large N. This averaging technique is often called

‘taking looks’ because it can be shown to be equiva-

lent to segmenting the azimuth spectrum into

separate frequency bands, forming a power image

from each band, then stacking the images in an aver-

age. Since azimuth band corresponds to a particular

look direction relative to a target on the ground, this

technique is called taking looks.
Of course averaging together a large number of

pixels will lower the intrinsic resolution of the image,

so designing the system to have a larger bandwidth is

desirable if radiometric resolution is important. Note

also that there is a limit to how far one can go to

improve the statistics. The improvement above

assumes that all the pixels come from the same dis-

tribution. If the scene is variable in intrinsic

brightness, not all the benefits will be realized.
If there is a bright target within a resolution cell,

then there is a mean value associated with the

Gaussian random variables (Figure 41). This com-

plex random variable has a Rician distribution given

by

pA að Þ ¼ a

�2
e – a2þs2ð Þ=2�2

I0
as

�2

� �
; a � 0 ½130�
all S
Rayleigh  Large S

~ Gaussian  

within a scattering cell. (b) The Rician distribution of the
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where I0 is the modified Bessel function of the
first kind and s is the specular target strength.
This distribution approaches a Gaussian distribu-
tion for large s relative to �. The distribution of
the phase, which is uniform for s¼ 0, becomes
more peaked as s grows, eventually approximating
a Gaussian also:

pY �ð Þ ! s=�ffiffiffiffiffi
2�
p e – s2�2=2�2 ½131�

Often specular targets are used for calibration of the
radar. If the specular target is not sufficiently bright,
then the amplitude and phase will be corrupted by
the background random scatterers.

Another way to model the surface is in terms of
a general reflectivity function that is statistical in
nature. Since

�zcc x9; r 9ð Þ ¼
Z Z

dr dx� x; rð Þ

� sinc
�

�X
x9 – xð Þ

� �
sinc

�

�R
r 9 – rð Þ

� �
½132�

if � is a statistical function, the power that is mean-
ingful is the expected power scattered back from the
resolution cell, which is related by scale factors and
geometric normalizations to E{���}. Writing this
out explicitly, we have

E �zcc�
�
zcc

� �
x9; r 9ð Þ ¼

Z
dx1

Z
dx2

Z
dr1

Z
dr2

� E � x1; r1ð Þ�� x2; r2ð Þf g ½133�

¼ sinc
�

�X
x9 – x1ð Þ

� �
sinc

�

�X
x9 – x2ð Þ

� �
½134�

¼ sinc
�

�R
r 9 – r1ð Þ

� �
sinc

�

�R
r 9 – r2ð Þ

� �
½135�

If the scatterers that comprise the reflectivity are
uncorrelated, then the expected value of the product
of the surface with itself when not coaligned would
be zero:

E � x1; r1ð Þ�� x2; r2ð Þf g ¼ E � x1; r1ð Þf gE �� x2; r2ð Þf g ¼ 0

½136�

However, when the surface is self-aligned

E � x1; r1ð Þ�� x2; r2ð Þf g ¼ � x1; r1ð Þj j2 ½137�

More succinctly,

E � x1; r1ð Þ�� x2; r2ð Þf g ¼ E � x1; r1ð Þj j2
� �
� � x1 – x2ð Þ� r1 – r2ð Þ ½138�
Using this expression in eqn [135] simplifies the
integrals

E �zcc�
�
zcc

� �
x9; r 9ð Þ ¼

Z
dx

Z
dr E � x; rð Þj j2

� �
½139�

sinc2 �

�X
x9 – xð Þ

� �
sinc2 �

�R
r 9 – rð Þ

� �
½140�

¼ E �j j2
� �

�X�R ½141�

For homogeneous surfaces, we can expect
the mean power to be essentially constant over the
resolution cell, so we can take the expectation out-
side the integration. Also the variables x9 and r9 can
profitably be set to zero since there is no dependence
on space. Then the integration over the sinc func-
tions produces a constant, which is proportional to
the area under them. This turns out to be �X and
�R. So we see that E{�zcc�zcc

� } is related to the
normalized backscattering cross-section �0 through
the function �.
Doppler and the Interferometric Baseline

The precise definition of interferometric baseline
and phase, and consequently the topographic
mapping process, depends on how the SAR data
comprising the interferometer are processed.
Consequently, a brief overview of the salient aspects
of SAR processing is in order.

Processed data from SAR systems are sampled
images. Each sample, or pixel, represents some aspect
of the physical process of radar backscatter. A resolu-
tion element of the imagery is defined by the spectral
content of the SAR system. Fine resolution in the
range direction is achieved typically by transmitting
pulses of either short time duration with high peak
power, or of a longer time duration with a wide,
coded signal bandwidth at lower peak transmit
power. Resolution in range is inversely proportional
to this bandwidth. In both cases, the received echo for
each pulse is sampled at the required radar signal
bandwidth.

For ultra-narrow pulsing schemes, the pulse
width is chosen at the desired range resolution,
and no further data manipulation is required. For
coded pulses, the received echoes are typically
processed with a matched filter technique to
achieve the desired range resolution. Most space-
borne platforms use chirp-encoding to attain the
desired bandwidth and consequent range resolu-
tion, where the frequency is linearly changed
across the pulse.
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Resolution in the azimuth, or along-track, direc-
tion, parallel to the direction of motion, is achieved by
synthesizing a large antenna from the echoes received
from the sequence of pulses illuminating a target. The
pulses in the synthetic aperture contain an unfocused
record of the target’s amplitude and phase history. To
focus the image in azimuth, a digital ‘lens’ that mimics
the imaging process is constructed, and is applied by
matched filtering. Azimuth resolution is limited by the
size of the synthetic aperture, which is governed by
the amount of time a target remains in the radar beam.
The azimuth beam width of an antenna is given by
�BWX k�/L, where � is the wavelength, L is the
antenna length, and k is a constant that depends on
the antenna (k¼ 1 is assumed in this chapter). The size
of the antenna footprint on the ground in the azimuth
direction is approximately given by

laz ¼ ��BW ¼ �
�

L
½142�

where � is the range to a point in the footprint.
During the time a target is in the beam, the range and

angular direction to the target are changing from pulse
to pulse, as shown in Figure 30. To generate SAR
image, a unique range or angle must be selected from
the family of ranges and angles to use as a reference for
focusing the image. Once selected, the target’s azimuth
and range position in the processed image is uniquely
established. Specifying an angle for processing is
equivalent to choosing a reference Doppler frequency.
The bold dashed line from pulse N-2 to the target in
Figure 30 indicates the desired angle or Doppler fre-
quency at which the target will be imaged. This
selection implicitly specifies the time of imaging, and
therefore the location of the radar antenna. This is an
important and often ignored consideration in defining
the interferometric baseline. The baseline is the vector
connecting the locations of the radar antennas forming
the interferometer; since these locations depend on the
choice of processing parameters, so does the baseline.
For two-aperture cross-track interferometers, this is a
subtle point; however, for repeat-track geometries
where the antenna pointing can be different from track
to track, careful attention to the baseline model is essen-
tial for accurate mapping performance.
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