GEOS F493 / F693
s and Modeling

Geodetic Methoc



Geodesy is the study of the size, shape and gravity field of the Earth
and Earth’s orientation in space.
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Some (modern) techniques

¢ Global Navigation Satellite System (GNSS, includes GPS)

¢ Interferometric Synthetic Aperture Radar Analysis (space-based,
ground-based)

¢ Electronic Tiltmeters

o Gravity Measurements (space, ground)

¢ Electronic Distance Measurement (EDM)
e Laser Scanning (LiDAR; terrestrial, aerial)
e Structure from Motion (SfM)
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GNSS - Continuous Installations 1/3




GNSS - Continuous Installations 2/3

very stable:

Picture: UNAVCO 5/40



GNSS - Continuous Installations 3/3
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GNSS - Campaign / Episodic Installations 1/5

Benchmark:

images: R. Grapenthin




GNSS - Campaign / Episodic Installations 2/5

Benchmark:

images: R. Grapenthin




GNSS - Campaign / Episodic Installations 3/5

Setup (spike mount):

images: R. Grapenthin




GNSS - Campaign / Episodic Installations 4/5

Setup (tripod):

images: R. Grapenthin
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GNSS - Campaign / Episodic Installations 5/5




GNSS - Campaign Oops

Setup (tripod):

images: R. Grapenthin
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GNSS - Prod

UNAVCO

cts: time series

ATW2 (ATW2_AKDA_AK2000) NAMO8

Processed Daily Position Time Series - Cleaned (SD > 20 Removed)
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GNSS - Prod Displacement Maps

Grapenthin et al., 2013
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GNSS - Products: velocity fields

Herrina et al.. 2018
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Figure 1. Horizontal velocities from the GAGE solution in (a) the contiguous United States, (b) Alaska, and (c) the Caribbean.

The solution is decimated for clarity in Figure 1a, where only approximately 15% of the stations in the solution are

shown west of 110°W. Velocity uncertainties are plotted at 95% confidence but are imperceptibly small at this scale. The
background color map in Figure 1a shows the station density per square degree of the processed network in the

contiguous U.S. 15/40



INSAR - space-based
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source: Geoscience Australia, http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/geodetic-
techniques/interferometric-synthetic-aperture-ragar
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INSAR - Products: Interferograms
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INSAR - Products: Time Series
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Figure 2. Time series results. ENVISAT LOS displacement map (a) for ascending orbit 61 (March 2007 to February 2010) and (b) for descending orbit 140 (March
2007 to February 2010). (c and d) ENVISAT time series (ts) (see star in Figure 1c for location). ALOS-1 LOS displacement map (e) for ascending orbit 133

(January 2007 to October 2009) and (£) for descending orbit 474 (January 2007 to January 2010). ALOS-1 LOS displacement map (g) for ascending orbit 133 (October

2009 to June 201) and (h) for descending orbit 474 (January 2010 to July 2010). (i) ALOS-1 LOS displacement map for ascending orbit 133 (June 2010 to March

2011). (j and k) ALOS-1 time series (see star in Figure 1c for location). In (a), (b), and (e)~(i) data are unwrapped, and spatially correlated look-angle errors 18/40



Ground-based SAR 1/2

Radar
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(c) snow cover (d) trees

Figure 11. Examples of GBRI applications: (a) terrain mapping, digital elevation model of a slope
obtained through GBSAR (after [84]) (b) dams monitoring (courtesy of IDS georadar [48]); (c) snow
cover monitoring, map of snow water equivalent change obtained by GBSAR (after [85]); (d) trees
monitoring by GBSAR (after [86]).

source: Pieraccini and Miccinesi, 2019, Remote Sensing
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Ground-based SAR 2/2

(a) no-DOA (c) linear SAR

(d) MIMO (e) ArcSAR (f) moving slot

Figure 4. Examples of ground-based radar interferometers: (a) no-DOA (after [48]); (b) Rotary
(after [49]); (c) linear SAR (after [48]); (d) MIMO (after [50]); (e) ArcSAR (after [48]); (f) moving slot
(after [21]).

source: Pieraccini and Miccinesi, 2019, Remote Sensing
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Tiltmeters: Florida Installation - Borehole

R. Grapenthin 21/40
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Tiltmeters: Florida Installation - Borehole
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Tiltmeters: Florida Installation - Borehole
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Tiltmeters: Florida Installation - Borehole
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Tiltmeters: Florida Installation - Borehole
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Tiltmeters: Florida Installation - Borehole
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Florida Installation - Bo

R. Grapenthin

21/40



Tiltmeters: Florida Installation - Platform
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Tiltmeters: Florida Installation - Platform
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Tiltmeters: Florida Installation - Platform
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Tiltmeters: Florida Installation - Platform
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Tiltmeters: Florida Installation - Platform
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Tiltmeters

Mount St. Helens Science & Learning Center; Iris
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Tiltmeters: Products - time series
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Fig. 8 Time series for titmeter SOSO, monitoring Sotara volcano (see Alpala et al., 2017). Left column: tiltmeter installed at the surface, fixed with expansion screws and epoxy cement (Fig. 7, left column). Center column:
tiltmeter installed at the surface, fastened to a polished rock surface with screws only. Right: tiltmeter installed below the surface, fastened to a polished rock surface only with screws. The upper row corresponds to the slope in
the East component, the middle row to the slope in the North component, and the bottom row to temperature.

Battaglia et al., 2019
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Gravity - space based

GRACE Mission

Science Goals

High resolution, mean & time
variable gravity field mapping
for Earth System Science
applications.
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courtesy: Geoscience Australia, http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/geodetic-
techniques/interferometric-synthetic-aperture-radar




vity - space based: product

courtesy: NASA-JPL
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Gravity - ground-based

Fig. 30 Set up of a gravity benchmark at Mount St Helens. Note the drilled leg holes for the Scintrex CG-5 tripod Photo courtesy of M. Poland, US Geological
Survey.

Battaglia et al., 2019
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Gravity - ground-based: product
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Figure 7. Comparison between lava level (upper plot) and gravity (black curve in lower plot) spanning the May 2015 drain-
ing of Kilauea’s summit lava lake. Using the model of Carbone et al. [2013], a lava density of ~1400 kg/m3 is necessary
to fit the gravity change based on the constraints provided by the change in lava level (red curve).

Poland and Carbone, 2016

28/40



Electronic Distance Measurement (EDM) 1/4

http://volcano.si.edu/Photos/full/03503 %og{t o



Electronic Distance Measurement (EDM) 2/4

Fig. 1 Using the EDM in the field: measurement of the baseline between a base station and the target reflector installed on the flank of the volcanic edifice—
Puracé Volcano (Colombia) using a total station. A total station is an electronic theodolite integrated with EDM and an on-board computer to collect data and perform
calculations.

Battaglia et al., 2019
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Electronic Distance Measu t (EDM) 3/4

Fig. 2 Different EDM base stations: (A) Concrete column; (B) Concrete baseplate; (C) Small plate or screw in stainless steel.

Battaglia et al., 2019
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Electronic Distance Measurement (EDM) 4/4

Battaglia et al., 2019

Fig.3 (A) Left: Reflecting prisms for EDM measurements. Center and Right. Fixing the prism to the stable outcrop with epoxy cement, in the images the coupling
of these in rock is observed. (B) Mounting sleeve awed o H‘l!"*’r“‘ Wl\"1 m H0U W Ewert and Swanson, 1992). 32/40




Laser Scanning

UNAYGO,,



Laser Scanning

UNAVCO
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Laser Scanning: Product - point cloud

Jones et al., 2015

December 2010
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Laser Scanning: Product - time series
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Jones et al., 2015
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Structure from Motion
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37/40



Structure from Motion
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Figure 1: Example of imagery acquisition.
Structure  from  Motion photogrammetry
requires multiple photographs with large
overlap collected from different positions and
directions.

source: Micheletti et al., 2015,Geomorphological Techniques, Chap. 2, Sec,3 5/24 o



Structure from Motion
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Figure 5: Alluvial fan point cloud generated
using smartphone imagery and 123D Catch
(Micheletti et al., 2014).
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source: http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson8-2/SfM.html
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