GEOS F493 / F693 Geodetic Methods and Modeling

– Lecture 03a: Linear Algebra Review–

Ronni Grapenthin rgrapenthin@alaska.edu Elvey 413B (907) 474-7286

September 16, 2019

- Scalar:
- Vector:

- Scalar: a number, provides a magnitude
- Vector:

- Scalar: a number, provides a magnitude
- Vector: has magnitude **and** direction

- Scalar: a number, provides a magnitude
- Vector: has magnitude **and** direction

- Scalar:
- Vector:

- Scalar: a number, provides a magnitude
- Vector: has magnitude **and** direction

- Scalar: speed, length
- Vector:

- Scalar: a number, provides a magnitude
- Vector: has magnitude **and** direction

- Scalar: speed, length
- Vector: velocity, displacement

- Scalar: a number, provides a magnitude
- Vector: has magnitude **and** direction

- Scalar: speed, length
- Vector: velocity, displacement

- Scalar: a number, provides a magnitude
- Vector: has magnitude **and** direction

- Scalar: speed, length
- Vector: velocity, displacement

$$\vec{v} \cdot \vec{u} = \vec{v}^T \vec{u}$$

$$= \begin{bmatrix} v_1 & v_2 & \cdots & v_N \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix}$$

$$= c$$

where c is a scalar!

$$\vec{v} \cdot \vec{u} = \vec{v}^T \vec{u}$$

$$= \begin{bmatrix} v_1 & v_2 & \cdots & v_N \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix}$$

$$= c$$

where *c* is a scalar!

Geometrically

$$ec{v}\cdotec{u} = ||ec{v}|||ec{u}||cos(heta)$$

where θ is the angle between \vec{v}, \vec{u} .

$$\vec{v} \cdot \vec{u} = \vec{v}^T \vec{u}$$

$$= \begin{bmatrix} v_1 & v_2 & \cdots & v_N \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix}$$

$$= c$$

where *c* is a scalar!

Geometrically

$$ec{v}\cdotec{u} = ||ec{v}|||ec{u}||cos(heta)$$

where θ is the angle between \vec{v}, \vec{u} . What if $\theta = 90^{\circ}$?

$$\vec{v} \cdot \vec{u} = \vec{v}^T \vec{u}$$

$$= \begin{bmatrix} v_1 & v_2 & \cdots & v_N \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix}$$

$$= c$$

where *c* is a scalar!

Geometrically

$$ec{v}\cdotec{u} = |ec{v}||ec{u}||ec{u}||cos(heta)$$

where θ is the angle between \vec{v}, \vec{u} . What if $\theta = 90^{\circ}$? $cos(\theta) = 0 \dots$ use dot product to test for orthogonality!

Linear Combinations

We can apply arithmetic operations on vectors:

$$c \cdot \vec{v} + d \cdot \vec{u} = \vec{y}$$

is a linear combination of \vec{v} and \vec{u} using weights / coefficients c, d to combine vector elements.

We can apply arithmetic operations on vectors:

$$c \cdot \vec{v} + d \cdot \vec{u} = \vec{y}$$

is a linear combination of \vec{v} and \vec{u} using weights / coefficients *c*, *d* to combine vector elements.

Example:

Let

$$\vec{v} = \begin{bmatrix} 2\\ -1 \end{bmatrix}, \vec{u} = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

then

$$3\vec{v} + 2\vec{u} =$$

We can apply arithmetic operations on vectors:

$$c \cdot \vec{v} + d \cdot \vec{u} = \vec{y}$$

is a linear combination of \vec{v} and \vec{u} using weights / coefficients *c*, *d* to combine vector elements.

Example:

Let

then

$$\vec{v} = \begin{bmatrix} 2\\ -1 \end{bmatrix}, \vec{u} = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

 $3\vec{v} + 2\vec{u} = \begin{bmatrix} 8\\ -1 \end{bmatrix}$

 $\begin{array}{rcrcr} x + 2y + 3z &= & 6 \\ 2x + 5y + 2z &= & 4 \\ 6x - 3y + z &= & 2 \end{array}$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

$$x + 2y + 3z = 6$$

 $2x + 5y + 2z = 4$
 $6x - 3y + z = 2$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

$$x + y + z =$$

$$x + 2y + 3z = 6$$

 $2x + 5y + 2z = 4$
 $6x - 3y + z = 2$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

$$x\begin{bmatrix}1\\2\\6\end{bmatrix}+y$$
 $+z$ =

x + 2y + 3z = 62x + 5y + 2z = 46x - 3y + z = 2

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

$$x\begin{bmatrix}1\\2\\6\end{bmatrix}+y\begin{bmatrix}2\\5\\-3\end{bmatrix}+z =$$

 $\begin{array}{rcrcr} x + 2y + 3z &=& 6\\ 2x + 5y + 2z &=& 4\\ 6x - 3y + z &=& 2 \end{array}$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

$$x\begin{bmatrix}1\\2\\6\end{bmatrix}+y\begin{bmatrix}2\\5\\-3\end{bmatrix}+z\begin{bmatrix}3\\2\\1\end{bmatrix} =$$

 $\begin{array}{rcrcr} x + 2y + 3z &=& 6\\ 2x + 5y + 2z &=& 4\\ 6x - 3y + z &=& 2 \end{array}$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

$$x\begin{bmatrix}1\\2\\6\end{bmatrix}+y\begin{bmatrix}2\\5\\-3\end{bmatrix}+z\begin{bmatrix}3\\2\\1\end{bmatrix} = \begin{bmatrix}6\\4\\2\end{bmatrix}$$

We can write this in the form of a matrix that transforms the input vector ([x, y, z]) into an output vector:

We can write this in the form of a matrix that transforms the input vector ([x, y, z]) into an output vector:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 2 \\ 6 & -3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}$$

We can write this in the form of a matrix that transforms the input vector ([x, y, z]) into an output vector:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 2 \\ 6 & -3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}$$
$$\mathbf{Gm} = \mathbf{d}$$

We can write this in the form of a matrix that transforms the input vector ([x, y, z]) into an output vector:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 2 \\ 6 & -3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}$$
$$\mathbf{Gm} = \mathbf{d}$$

in this general form **G** is a matrix *m* rows and *n* columns ($m \times n$ matrix):

$$\mathbf{G} = \begin{bmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & g_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ g_{m1} & g_{m2} & \cdots & g_{mn} \end{bmatrix}$$

 $\mathbf{Gm} = \mathbf{d}$ only has a solution if \mathbf{d} is a linear combination of the columns in \mathbf{G} .

Matrix Operations

If
$$\mathbf{G} = \begin{bmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & g_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ g_{m1} & g_{m2} & \cdots & g_{mn} \end{bmatrix}$$
 then
 $3\mathbf{G} = \begin{bmatrix} 3g_{11} & 3g_{12} & \cdots & 3g_{1n} \\ 3g_{21} & 3g_{22} & \cdots & 3g_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ 3g_{m1} & 3g_{m2} & \cdots & 3g_{mn} \end{bmatrix}$

Matrix addition is element-wise (same as vector addition), requires same dimensions for both matrices.

Matrix multiplication:

 $\mathbf{A} \cdot \mathbf{B}$ or $\mathbf{A}\mathbf{B}$ is defined if the number of columns in \mathbf{A} are the same as the number of rows in \mathbf{B} .

If **A** is $(m \times n)$, then **B** must be $(n \times m)$, inner dimensions must agree.

Example on board.

If **A** is $(m \times n)$ matrix, then **A**^T the transpose of **A** is $(n \times m)$ matrix with columns made up of the rows of **A**:

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
$$\mathbf{A}^T =$$

If **A** is $(m \times n)$ matrix, then **A**^T the transpose of **A** is $(n \times m)$ matrix with columns made up of the rows of **A**:

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
$$\mathbf{A}^{\mathsf{T}} = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$$

Some properties:

$$(\mathbf{A}^{T})^{T} = \mathbf{A}$$
$$(\mathbf{A} + \mathbf{B})^{T} = \mathbf{A}^{T} + \mathbf{B}^{T}$$
$$(\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$$

Some additional terms: Diagonal Matrix: Off-diagonal entries are zero Identity Matrix: diagonal contains ones, rest zero Matrix Trace: Sum of the diagonal elements On Board.

The vectors $\vec{z_1}, \vec{z_2}, \cdots, \vec{z_n}$ are **linearly independent** if the system of equations:

$$c_1 \vec{z_1} + c_2 \vec{z_2} + \dots + c_n \vec{z_n} = \vec{0}$$
 (1)

has only the trivial solution $\vec{c} = 0$. If there are multiple solutions, then the vectors are **linearly dependent**.

Often we want to solve $\mathbf{Gm} = \mathbf{d}$ not for \mathbf{d} , but for \mathbf{m} !

Think equation $4x = 3 \dots$ What's x?

Often we want to solve $\mathbf{Gm} = \mathbf{d}$ not for \mathbf{d} , but for \mathbf{m} !

Think equation $4x = 3 \dots$ What's x?

Yes, x = 3/4!

Often we want to solve $\mathbf{Gm} = \mathbf{d}$ not for \mathbf{d} , but for \mathbf{m} !

Think equation $4x = 3 \dots$ What's x?

Yes, x = 3/4!

For matrices:

$$\begin{array}{rcl} \mathbf{G}\mathbf{m} &= \mathbf{d} \\ \mathbf{G}^{-1}\mathbf{G}\mathbf{m} &= \mathbf{G}^{-1}\mathbf{d} \\ \mathbf{m} &= \mathbf{G}^{-1}\mathbf{d} \end{array}$$

How to find G^{-1} ?

How to find G^{-1} ?

We can try the determinant (example for 2 x 2 matrix):

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If $det(\mathbf{A}) = 0$, then **A** is not invertible.

We can also use the Normal Equations (see inverse methods):

$$\mathbf{G}^{-1} = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T$$

such that:

$$\mathbf{m} = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \mathbf{d}$$