GEOS F493 / F693
 Geodetic Methods and Modeling

- Lecture 03a: Linear Algebra Review-

Ronni Grapenthin rgrapenthin@alaska.edu

Elvey 413B
(907) 474-7286

September 16, 2019

Scalar vs. Vector

- Scalar:
- Vector:

Scalar vs. Vector

- Scalar: a number, provides a magnitude
- Vector:

Scalar vs. Vector

- Scalar: a number, provides a magnitude
- Vector: has magnitude and direction

Scalar vs. Vector

- Scalar: a number, provides a magnitude
- Vector: has magnitude and direction
Examples:
- Scalar:
- Vector:

Scalar vs. Vector

- Scalar: a number, provides a magnitude
- Vector: has magnitude and direction
Examples:
- Scalar: speed, length
- Vector:

Scalar vs. Vector

- Scalar: a number, provides a magnitude
- Vector: has magnitude and direction
Examples:
- Scalar: speed, length
- Vector: velocity, displacement

Scalar vs. Vector

- Scalar: a number, provides a magnitude
- Vector: has magnitude and direction

Examples:

- Scalar: speed, length
- Vector: velocity, displacement

Scalar vs. Vector

- Scalar: a number, provides a magnitude
- Vector: has magnitude and direction

Examples:

- Scalar: speed, length
- Vector: velocity, displacement

$$
\begin{aligned}
\vec{v} & =\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
\vec{u} & =\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
\vec{a} & =\left[\begin{array}{l}
2 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
\end{aligned}
$$

Vector Field

Vectors

What is its length? (Vector Norm)

$$
\begin{aligned}
\|\vec{v}\| & =\sqrt{\left(v_{1}^{2}+v_{2}^{2}\right)} \\
\|\vec{v}\| & =\sqrt{\left(v^{T} \cdot v\right)} \\
& =\sqrt{\left(v_{1} v_{1}+v_{2} v_{2}+\cdots v_{n} v+n\right)}
\end{aligned}
$$

Dot Product in General

$$
\begin{aligned}
\vec{v} \cdot \vec{u} & =\vec{v}^{\top} \vec{u} \\
& =\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{N}
\end{array}\right] \cdot\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{N}
\end{array}\right] \\
& =c
\end{aligned}
$$

where c is a scalar!

Dot Product in General

$$
\begin{aligned}
\vec{v} \cdot \vec{u} & =\vec{v}^{T} \vec{u} \\
& =\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{N}
\end{array}\right] \cdot\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{N}
\end{array}\right] \\
& =c
\end{aligned}
$$

where c is a scalar!
Geometrically

$$
\vec{v} \cdot \vec{u}=\|\vec{v}\|\|\vec{u}\| \cos (\theta)
$$

where θ is the angle between \vec{v}, \vec{u}.

Dot Product in General

$$
\begin{aligned}
\vec{v} \cdot \vec{u} & =\vec{v}^{\top} \vec{u} \\
& =\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{N}
\end{array}\right] \cdot\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{N}
\end{array}\right] \\
& =c
\end{aligned}
$$

where c is a scalar!
Geometrically

$$
\vec{v} \cdot \vec{u}=\|\vec{v}\|\|\vec{u}\| \cos (\theta)
$$

where θ is the angle between \vec{v}, \vec{u}.
What if $\theta=90^{\circ}$?

Dot Product in General

$$
\begin{aligned}
\vec{v} \cdot \vec{u} & =\vec{v}^{T} \vec{u} \\
& =\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{N}
\end{array}\right] \cdot\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{N}
\end{array}\right] \\
& =c
\end{aligned}
$$

where c is a scalar!
Geometrically

$$
\vec{v} \cdot \vec{u}=\|\vec{v}\|\|\vec{u}\| \cos (\theta)
$$

where θ is the angle between \vec{v}, \vec{u}.
What if $\theta=90^{\circ}$?
$\cos (\theta)=0 \ldots$ use dot product to test for orthogonality!

Linear Combinations

We can apply arithmetic operations on vectors:

$$
c \cdot \vec{v}+d \cdot \vec{u}=\vec{y}
$$

is a linear combination of \vec{v} and \vec{u} using weights / coefficients c, d to combine vector elements.

Linear Combinations

We can apply arithmetic operations on vectors:

$$
c \cdot \vec{v}+d \cdot \vec{u}=\vec{y}
$$

is a linear combination of \vec{v} and \vec{u} using weights / coefficients c, d to combine vector elements.

Example:
Let

$$
\vec{v}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \vec{u}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

then

$$
3 \vec{v}+2 \vec{u}=
$$

Linear Combinations

We can apply arithmetic operations on vectors:

$$
c \cdot \vec{v}+d \cdot \vec{u}=\vec{y}
$$

is a linear combination of \vec{v} and \vec{u} using weights / coefficients c, d to combine vector elements.

Example:
Let

$$
\vec{v}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \vec{u}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

then

$$
3 \vec{v}+2 \vec{u}=\left[\begin{array}{c}
8 \\
-1
\end{array}\right]
$$

Systems of Linear Equations

$$
\begin{array}{r}
x+2 y+3 z=6 \\
2 x+5 y+2 z=4 \\
6 x-3 y+z=2
\end{array}
$$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

Systems of Linear Equations

$$
\begin{array}{r}
x+2 y+3 z=6 \\
2 x+5 y+2 z=4 \\
6 x-3 y+z=2
\end{array}
$$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

Write in vector form:
$x+y+z \quad=$

Systems of Linear Equations

$$
\begin{array}{r}
x+2 y+3 z=6 \\
2 x+5 y+2 z=4 \\
6 x-3 y+z=2
\end{array}
$$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

Write in vector form:

$$
x\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]+y \quad+z=
$$

Systems of Linear Equations

$$
\begin{array}{r}
x+2 y+3 z=6 \\
2 x+5 y+2 z=4 \\
6 x-3 y+z=2
\end{array}
$$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

Write in vector form:

$$
x\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]+y\left[\begin{array}{c}
2 \\
5 \\
-3
\end{array}\right]+z=
$$

Systems of Linear Equations

$$
\begin{array}{r}
x+2 y+3 z=6 \\
2 x+5 y+2 z=4 \\
6 x-3 y+z=2
\end{array}
$$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

Write in vector form:

$$
x\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]+y\left[\begin{array}{c}
2 \\
5 \\
-3
\end{array}\right]+z\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=
$$

Systems of Linear Equations

$$
\begin{array}{r}
x+2 y+3 z=6 \\
2 x+5 y+2 z=4 \\
6 x-3 y+z=2
\end{array}
$$

we want to solve for x, y, z. We have 3 equations and 3 unknowns, usually giving 1 solution. Other systems may not have a solution.

Write in vector form:

$$
x\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]+y\left[\begin{array}{c}
2 \\
5 \\
-3
\end{array}\right]+z\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
2
\end{array}\right]
$$

Systems of Linear Equations

We can write this in the form of a matrix that transforms the input vector $([x, y, z])$ into an output vector:

Systems of Linear Equations

We can write this in the form of a matrix that transforms the input vector $([x, y, z])$ into an output vector:

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 5 & 2 \\
6 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
2
\end{array}\right]
$$

Systems of Linear Equations

We can write this in the form of a matrix that transforms the input vector $([x, y, z])$ into an output vector:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 5 & 2 \\
6 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
6 \\
4 \\
2
\end{array}\right] \\
\mathbf{G m} & =\mathbf{d}
\end{aligned}
$$

Systems of Linear Equations

We can write this in the form of a matrix that transforms the input vector $([x, y, z])$ into an output vector:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 5 & 2 \\
6 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
6 \\
4 \\
2
\end{array}\right] \\
\mathbf{G m} & =\mathbf{d}
\end{aligned}
$$

in this general form \mathbf{G} is a matrix m rows and n columns ($m \times n$ matrix):

$$
\mathbf{G}=\left[\begin{array}{cccc}
g_{11} & g_{12} & \cdots & g_{1 n} \\
g_{21} & g_{22} & \cdots & g_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
g_{m 1} & g_{m 2} & \cdots & g_{m n}
\end{array}\right]
$$

$\mathbf{G m}=\mathbf{d}$ only has a solution if \mathbf{d} is a linear combination of the columns in \mathbf{G}.

Matrix Operations

If $\mathbf{G}=\left[\begin{array}{cccc}g_{11} & g_{12} & \cdots & g_{1 n} \\ g_{21} & g_{22} & \cdots & g_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ g_{m 1} & g_{m 2} & \cdots & g_{m n}\end{array}\right]$ then
$\mathbf{3} \mathbf{G}=\left[\begin{array}{cccc}3 g_{11} & 3 g_{12} & \cdots & 3 g_{1 n} \\ 3 g_{21} & 3 g_{22} & \cdots & 3 g_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ 3 g_{m 1} & 3 g_{m 2} & \cdots & 3 g_{m n}\end{array}\right]$
Matrix addition is element-wise (same as vector addition), requires same dimensions for both matrices.

Matrix Operations

Matrix multiplication:
$\mathbf{A} \cdot \mathbf{B}$ or $\mathbf{A B}$ is defined if the number of columns in \mathbf{A} are the same as the number of rows in \mathbf{B}.

If \mathbf{A} is $(\mathrm{m} \times \mathrm{n})$, then \boldsymbol{B} must be ($\mathrm{n} \times \mathrm{m}$), inner dimensions must agree.
Example on board.

Matrix Transpose

If \mathbf{A} is $(m \times n)$ matrix, then \mathbf{A}^{T} the transpose of \mathbf{A} is $(\mathrm{n} \times \mathrm{m})$ matrix with columns made up of the rows of \mathbf{A} :

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \\
\mathbf{A}^{T} & =
\end{aligned}
$$

Matrix Transpose

If \mathbf{A} is $(m \times n)$ matrix, then \mathbf{A}^{T} the transpose of \mathbf{A} is $(\mathrm{n} \times \mathrm{m})$ matrix with columns made up of the rows of \mathbf{A} :

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \\
\mathbf{A}^{T} & =\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right]
\end{aligned}
$$

Matrix Transpose

Some properties:

$$
\begin{aligned}
\left(\mathbf{A}^{T}\right)^{T} & =\mathbf{A} \\
(\mathbf{A}+\mathbf{B})^{T} & =\mathbf{A}^{T}+\mathbf{B}^{T} \\
(\mathbf{A B})^{T} & =\mathbf{B}^{T} \mathbf{A}^{T}
\end{aligned}
$$

Some additional terms:
Diagonal Matrix: Off-diagonal entries are zero Identity Matrix: diagonal contains ones, rest zero Matrix Trace: Sum of the diagonal elements

Transformation Example

On Board.

Linear Independence

The vectors $\overrightarrow{z_{1}}, \overrightarrow{z_{2}}, \cdots, \overrightarrow{z_{n}}$ are linearly independent if the system of equations:

$$
\begin{equation*}
c_{1} \overrightarrow{z_{1}}+c_{2} \overrightarrow{z_{2}}+\cdots+c_{n} \overrightarrow{z_{n}}=\overrightarrow{0} \tag{1}
\end{equation*}
$$

has only the trivial solution $\vec{c}=0$. If there are multiple solutions, then the vectors are linearly dependent.

Matrix Inverse

Often we want to solve $\mathbf{G m}=\mathbf{d}$ not for \mathbf{d}, but for \mathbf{m} !
Think equation $4 x=3 \ldots$ What's x ?

Matrix Inverse

Often we want to solve $\mathbf{G m}=\mathbf{d}$ not for \mathbf{d}, but for \mathbf{m} !
Think equation $4 x=3 \ldots$ What's x ?
Yes, $x=3 / 4$!

Matrix Inverse

Often we want to solve $\mathbf{G m}=\mathbf{d}$ not for \mathbf{d}, but for \mathbf{m} !
Think equation $4 x=3 \ldots$ What's x ?
Yes, $x=3 / 4$!
For matrices:

$$
\begin{aligned}
\mathbf{G m} & =\mathbf{d} \\
\mathbf{G}^{-1} \mathbf{G m} & =\mathbf{G}^{-1} \mathbf{d} \\
\mathbf{m} & =\mathbf{G}^{-1} \mathbf{d}
\end{aligned}
$$

How to find \mathbf{G}^{-1} ?

Matrix Inverse

How to find \mathbf{G}^{-1} ?
We can try the determinant (example for 2×2 matrix):

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
\mathbf{A}^{-1} & =\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\end{aligned}
$$

If $\operatorname{det}(\mathbf{A})=0$, then \mathbf{A} is not invertible.

Matrix Inverse

We can also use the Normal Equations (see inverse methods):

$$
\mathbf{G}^{-1}=\left(\mathbf{G}^{T} \mathbf{G}\right)^{-1} \mathbf{G}^{T}
$$

such that:

$$
\mathbf{m}=\left(\mathbf{G}^{T} \mathbf{G}\right)^{-1} \mathbf{G}^{T} \mathbf{d}
$$

