GEOS F493 / F693
s and Modeling

Geodetic Methoc

" Lecture 03b: Position Estimations-



System Architecture

e Space Segment — satellites
e Control Segment — management of satellites
e User Segment — Civil and military receiver development
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System Architecture: Space Segment

e Baseline constellation 24
satellites, 6 orbital planes, 55°
inclined

e Period ~ 12 hours, stationary
ground tracks

e Currently 32 satellites
operational

GPS Nominal Constellation
24 Satellites in 6 Orbital Planes
4 Satellites in each Plane
20,200 km Altitudes, 55 Degree Inclination
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e continuous transmission on 2 L-band radio frequencies: Link 1
(L1), Link 2 (L2) (for legacy GPS)

e L1 (fi1 = 1575.42MHz): 1 signal for civil users, 1 for military

e L2 (fi» =1227.60 MHz): 1 signal military, new signals for civilian
use (L2C, 19 satellites)

e L5 (1176.45MHz): Safety of Life; civilian use (12 satellites)
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Signals: Structure

e Carrier: sinusoidal signal with 7.1 , derives from 10.23 MHz
atomic clock
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e Ranging Code: pseudo-random noise (PRN) sequences unique to
satellite
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Signals: Structure

e Carrier: sinusoidal signal with f4 », derives from 10.23 MHz
atomic clock

e Ranging Code: pseudo-random noise (PRN) sequences unique to
satellite

o Navigation Data: satellite health, position, velocity, clock bias
parameters, almanac (information/status on several/all satellites)
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Signals: Structure
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from: http://www.ni.com/tutorial/7139/en/
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System Architecture: User Segment




Receivers: Signal Acquisition and Tracking

Receiver tasks:
e capture radio signals transmitted by satellites
e separate individual satellites
e measure signal transit time (crude)
o decode navigation message: gives satellite position, velocity, clock
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Receivers
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Misra and Enge, 2011, GPS-Signals, Measurements, and Performance
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Coordinate System

Coordinate system in which user
position is fixed:

e rotates with the Earth:
conventional terrestrial
reference system (CTRS)

e use Cartesian coordinate
system

¢ define origin at center of mass
e z-axis is axis of rotation

e Xx-axis goes through
intersection of equatorial plane
and reference median

» y-axis makes it right-handed
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Coordinate System

Coordinate system in which user
position is fixed:
e rotates with the Earth:
conventional terrestrial
reference system (CTRS)

e use Cartesian coordinate
system

¢ define origin at center of mass
e z-axis is axis of rotation

e Xx-axis goes through
intersection of equatorial plane
and reference median

. o Misra and Enge, 2011, GPS-Signals, Measurements, and
e y-axis makes it right-handed Performance

Easy, right?
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Coordinate System

What are potential issues?
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Coordinate System

What are potential issues?

e Polar motion: pole of rotation moves, roughly circular, several
meters/year

e Use conventional terrestrial pole (CTP) — average of polar motion
between 1900-1905

e Center of mass: where is it?
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Coordinate System

What are potential issues?
e Polar motion: pole of rotation moves, roughly circular, several
meters/year

e Use conventional terrestrial pole (CTP) — average of polar motion
between 1900-1905

e Center of mass: where is it?

Actually,
¢ Need consistent coordinates from measurements (have errors!)

Realize coordinate frame that fits measurements best (e.g,
least-squares)

World Geodetic System 1984 (WGS84) one such realization
GPS positions in WGS84 ECEF coordinate frame

Science: use various updates of ITRF (International Terrestrial
Reference Frame)
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Measurement Models

e Code Phase Measurement (today)
e Carrier Phase Measurement (next lecture)

Misra and Enge, 2011, GPS-Signals, Measurements, and Performance
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Position Estimation w/ Pseudoranges

(Derivation also in notes)

¢ Positioning by (pseudo-)ranging
¢ Range: geometric distance between satellite and receiver
e Pseudorange: includes distance, clock error effects, path delays

13/27



Position Estimation w/ Pseudoranges

(Derivation also in notes)

¢ Positioning by (pseudo-)ranging
¢ Range: geometric distance between satellite and receiver
e Pseudorange: includes distance, clock error effects, path delays

P =r&) 4 o0ty — 615 + 14+ T+

p(9) - pseudorange to satellite s

r(S) - true range to satellite s

c - speed of light

oty - receiver clock bias

ots - satellite clock bias

I, T - lonospheric and tropospheric delays

e - unmodeled effects, measurement errors, etc.
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Geometric Range

We want to estimate receiver position
Use Euclidean distance between receiver and satellite s:

Receiver at position (x, y, z)
Satellite, s, at position (x(8), y(s) z(9)),
Range r() is time dependent (not explicitly stated here)
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Geometric Range

We want to estimate receiver position
Use Euclidean distance between receiver and satellite s:

) = (19 = x)2 4 (y19) — )2 4 (209) — 2)2

Receiver at position (x, y, z)
Satellite, s, at position (x(8), y(s) z(9)),
Range r() is time dependent (not explicitly stated here)
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Geometric Range

k), (K 0

Misra and Enge, 2011, GPS-Signals, Measurements, and Performance
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Position Estimation w/ Pseudoranges

Insert geometric form of r(%) in Measurement Model:

pl®) = \/(X(S) —X)2 + (y® — y)2 4 (29 — 2)2 + coty, — cotS) + ¢

e ¢ now captures all errors incl. ionosphere, troposphere
e X,y,z,46t, are unknown, need to solve for those
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Position Estimation w/ Pseudoranges

Insert geometric form of r(%) in Measurement Model:

pl®) = \/(X(S) —X)2 + (y® — y)2 4 (29 — 2)2 + coty, — cotS) + ¢

e ¢ now captures all errors incl. ionosphere, troposphere

e X,y,z,46t, are unknown, need to solve for those
e What's the hangup?
e Non-linearin x, y, z .. .try linear approximation
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Taylor Expansion
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and its Taylor approximations; source wikipedia
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Position Estimation w/ Pseudoranges

« Assume we can approximate p(8) with a linear function in the
vicinity of a point.

e Use the linear parts of a multivariate Taylor Series expansion of
(s)
P

¢ Linear approximation about point (a, b) for any function f(x, y)
(differentiable at least once) given by:
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Position Estimation w/ Pseudoranges

« Assume we can approximate p(8) with a linear function in the
vicinity of a point.

e Use the linear parts of a multivariate Taylor Series expansion of
(s)
P

¢ Linear approximation about point (a, b) for any function f(x, y)
(differentiable at least once) given by:

f(x,y) = f(a,b) + 8—f(a, b)(x — a) + g;(a, b)(y — b)

ox

e Sum of the function value and its partial derivatives at (a, b)

18/27



Position Estimation w/ Pseudoranges

Linearizing p(® about an approx. position and expected receiver clock
bias (X, Y0, 2o, te,) using multivariate Taylor Series expansion yields:

(s)(X7y’ Z, te) = p(s)(X07y07207 teo)

2p(8) 2p(8)

o (x — xo) + oy (Y = yo) +
dpls opl

57 (z—20)+ —— oL, (fe — lg,) + €
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Position Estimation w/ Pseudoranges

We can simplify this:

®) (®)
0P px 4 9P

b p(s) ) p(S)
ox oy Az+

A
oz op, Nlete

p(S)(Xayvza te)_p(S)(X07y07ZO7teo) = Ay+
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Position Estimation w/ Pseudoranges

We can simplify this:

(s) (s) (s) (s)
(s) NG _ op Ax ap A Op Az p At
P ()(7J/»2Z7te) P (Xba Yo, 2o, ﬂm ) Ox —+ f?)/ y+ o0z + é)te s + €
Ax
(s) _ 8p® 9o o) gpls) Ay
2p0 = |22 o0 0@ o | Y 1

Ate
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Position Estimation w/ Pseudoranges

We can simplify this:

(s)
p(S)(X7y727 te)_p(S)(Xoany»ZOyteg) AZ+

) p(s)

o We substituted 6t, with t, to avoid double deltas.

Ote
Ax
Ay
Az
At



Position Estimation w/ Pseudoranges

We can simplify this:

(s) (s) (s) (s)
(s) _ o ™ Ny 0P N OO
P (Xa}/»Z, te) 4 (X07y07207t60) X X+ 8}/ y+ 9z + ot le+e€
Ax
(s) _ 958 9o 5,68 g, Ay
R I A
Afe

o We substituted 6t, with t, to avoid double deltas.

o Ap(9) is the difference between measured pseudorange and
expected geometric range between a given satellite position and
the receiver apriori position.
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Position Estimation w/ Pseudoranges

e Getting close to a solution!

ap®)  9p8)  ps)  Hpls)

* Need to calculate partial derivatives | £ 5y b
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Position Estimation w/ Pseudoranges

e Getting close to a solution!

ap®)  9p8)  ps)  Hpls)
ox ay 0z Ole

e Remember that we’re using this measurement model:

¢ Need to calculate partial derivatives

p(8) = \/(x(s) — X)2 + (y8) — y)2 + (209 — 2)2 + coty — c5tS) + ¢
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Position Estimation w/ Pseudoranges

Getting close to a solution!

. . . ap®)  9p8)  ps)  Hpls)
Need to calculate partial derivatives | =~ 5y = bt

Remember that we're using this measurement model:

pl8) = \/(x(s) — X)2 + (y(9) — y)2 + (2(9) — 2)2 + oty — cotS) + €

Let’s work on this for the term 652:). We will need the chain rule:

aun _ nun—1@
ox Ox
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Position Estimation w/ Pseudoranges

Getting close to a solution!

. . . ap®)  9p8)  ps)  Hpls)
Need to calculate partial derlvatlves[ e 5y = o |-

Remember that we're using this measurement model:

pl8) = \/(x(s) — X)2 + (y(9) — y)2 + (2(9) — 2)2 + oty — cotS) + €

®) . .
9" We will need the chain rule:

Let’s work on this for the term

aun j— nun_1@

ox ox

Set u to be the term under the square-root in the range
expression:

u=(x—x)2+ (y - y)2+ (205 — 2)?
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Position Estimation w/ Pseudoranges

We write:

00 _ 0y —XPT (T —yP+ (29— 27

ox ox
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Position Estimation w/ Pseudoranges

We write:

9p® 0V (XD —xP + (YO — y)2 + (20 — 2)?
ox ox

avu  ou?

ox  ox
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Position Estimation w/ Pseudoranges

We write:
¥ V(X —xP2 + (Y —y)Z + (20 — 2)?
ox ox
VU  uz
- Tox  ox
= J,u"% éﬂ{
2 ox
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Position Estimation w/ Pseudoranges

We write:

o9 9/ —xP+ (YO —yP + (20 — 2]
ox ox

avu  ou?

ox  ox

1,-30u

2 ox

10109 = x)? + (9 — y + (29 — 2]

2[1% ox
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Position Estimation w/ Pseudoranges

We write:
059 _ 0V — X+ (I — Y+ (29 - 2
ox ox
ovu ouz
T Tox  ox
_ 1,0
2 ox
LA = x4 () = )+ (2 2]
o oul ox
1 9[(x® — x)?]
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Position Estimation w/ Pseudoranges

We write:

99 _ 9/ —xP+ (YO —yP + (20 — 2
ox ox

2[1% ox
1
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Position Estimation w/ Pseudoranges

We write:

99 _ 9/ —xP+ (YO —yP + (20 — 2
ox ox

2[1% ox
1
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Position Estimation w/ Pseudoranges

For all the partial derivatives at the apriori position:

8p(s)

Xo — X(S)

ox
b p(S)

o

Yo~ y©

oy
b p(S)

o)

7o — 2

0z

Bp(s)
ate

o

e cis speed of light, this follows from earlier expressions of 61,

(s)

* py  is geometric range from receiver apriori position to satellite s.
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Position Estimation w/ Pseudoranges

With these expressions for the partial derivatives, we can write:

Ax
Xn—x(8) yo_y(s) 20_2(5) Ay

AplS) = 0 c +€
p Py Py oy Az
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Position Estimation w/ Pseudoranges

With n satellites in view, we have n pseudorange measurements:
oM, ..., p(" and can set up a linear system of equations:

Ap()
Ap3)

A

Xof(i()(” yo_(%/)“) 207(12)(1)
Po Po Po

Xo 7(2()(2) Yo _(%/)(2) Zy 7(22)(2)
Po Po Po

XO—X(”) Yo _y(n) Zo—Z(n)
pén) p(()n) pén)

AX
Ay
Az
Atg
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Solving the System (see Inverse Methods!)

System is of the form Gm = d

e G is the matrix with the partial derivatives
e d is the vector with the pseudorange differences
e mis the vector with the unknowns.
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Solving the System (see Inverse Methods!)

System is of the form Gm = d

e G is the matrix with the partial derivatives
e d is the vector with the pseudorange differences
e mis the vector with the unknowns.

We can solve this with least squares techniques to minimize residual
norm using the normal equations (G of full column rank):

m=(G'G)"'G"d

We can introduce a weight matrix W, for instance, to put less
emphasis on satellites at low elevation angles:

m=(GTWG)"'G" Wd
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Solving the System (see Inverse Methods!)

Once we have a solution m = [Ax, Ay, Az, At;] we can add these
values to the apriori values to get an update:

)07eyy )Q) Z&)(
Ynew _ Yo + Ay
Znew 20 Az
lenew le, Alg

and iterate until improvements are small.
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Solving the System (see Inverse Methods!)

Once we have a solution m = [Ax, Ay, Az, At;] we can add these
values to the apriori values to get an update:

X new XO AX
Ynew _ Yo + Ay
Znew 20 Az
lenew le, Alg

and iterate until improvements are small.

In this week’s lab you will implement this yourself!
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