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Lecture 03: Notes for Position Estimation with Pseudoranges

1 Introduction

Recall that a range describes the geometric distance between two points, here a satellite and a
receiver. This could be inferred by measuring the transit time, τ , of a signal that travels from
satellite to receiver at the speed of light, c. However, what the GPS receiver can provide is a range
that is biased by clock error effects, path delays due to ionosphere and toposphere impacts and
other error sources, which is why it’s called a pseudorange. For this derivation we will carry the
error terms along and assume that they can be effectively dealt with separately from the core of the
positioning problem.

2 Pseudorange Measurement Model

The pseudorange from receiver u to satellite s, ρ(s), can be expressed as:

ρ(s) = r(s) + c(δtu − δt(s)) + I + T + ε (1)

where r(s) is the true range to satellite s, c remains the speed of light, δtu is the receiver clock bias,
δt(s) is clock bias of satellite s and I, T are ionospheric and tropospheric delays. The last term,
ε, captures unmodeled effects, such as multipath, measurement errors, etc. Note that subscripts
(e.g., u) reflect receiver specific values, while superscripts identify individual satellites; these are not
powers of (s)!

3 Geometric Range

We have two ways to express the geometric range. One was mentioned above as the transit time, τ
multiplied by the speed of light, c. However, this does not include the receiver position, which we
would like to estimate. Instead, we can say:

r(s) =
√

(x(s) − x)2 + (y(s) − y)2 + (z(s) − z)2 (2)

which is the Euclidean distance between a receiver at position (x, y, z) and the satellite, s, at position
p(s) = (x(s), y(s), z(s)). Note that this range r(s) is also time dependent, which is not explicitly stated
in Equation 2. Obviously, the satellite moves and its position changes. But our receiver may also
move (which is actually the interesting application for geophysics). Furthermore, both positions have
to be given in the same coordinate system, which we will require to be earth centered earth-fixed,
ECEF.

As an aside: this requires a rotation of the satellite position, from space-fixed into the earth-fixed
coordinate system (otherwise approximately 10-20 m error) while also mapping the satellite position
back to its location at send time and removing Earth’s rotation rate (about 7× 10−6 radians in the
transmit time of 70-90 ms that it takes the signal to travel from satellite to receiver.):



p(s) =

 cos(ωeτ) sin(ωeτ) 0
−sin(ωeτ) cos(ωeτ) 0

0 0 1

 p̃(s) (3)

where p̃(s) is the satellite position in the space-fixed coordinate system, ωe is Earth’s rotation rate
and τ remains the signal transit time. Again, we will assume that we have the satellite position
already given in ECEF.

4 Solving Pseudorange Measurement Model for Receiver Po-
sition

Replacing r(s) in Equation 1 with Equation 2 we get:

ρ(s) =
√

(x(s) − x)2 + (y(s) − y)2 + (z(s) − z)2 + cδtu − cδt(s) + ε (4)

where x, y, z, δtu are unknown and ε now captures all delays including ionosphere and toposphere
delays given separately before. Unfortunately, Equation 4 is non-linear in x, y, z which prevents us
from setting up a linear system of equations that could be easily solved with, for instance, least-
squares approximations. What to do? Instead of throwing up our hands and walking away from
the problem, we can try to find a linear approximation of the problem and solve that for receiver
position and receiver clock error.

To achieve this, we will use the linear parts of a multivariate Taylor Series expansion of
ρ(s), which assumes that we can approximate ρ(s) with a linear function in the vicinity of a point.
For any function f(x, y) that is at least differentiable once, a linear approximation about the point
(a, b) is given by the sum of the function at this point and its partial derivatives at that point:

f(x, y) = f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b) (5)

If we linearize ρ(s) about an approximate position and expected receiver clock bias (x0, y0, z0, te0)
using multivariate Taylor Series expansion, we get:

ρ(s)(x, y, z, te) = ρ(s)(x0, y0, z0, te0)+
∂ρ(s)

∂x
(x−x0)+

∂ρ(s)

∂y
(y−y0)+

∂ρ(s)

∂z
(z−z0)+

∂ρ(s)

∂te
(te−te0)+ε

(6)
Keep in mind that we substituted δtu with te to avoid double deltas here. We can simplify this a
bit:

ρ(s)(x, y, z, te)− ρ(s)(x0, y0, z0, te0) =
∂ρ(s)

∂x
∆x+

∂ρ(s)

∂y
∆y +

∂ρ(s)

∂z
∆z +

∂ρ(s)

∂te
∆te + ε (7)

∆ρ(s) =
[

∂ρ(s)

∂x
∂ρ(s)

∂y
∂ρ(s)

∂z
∂ρ(s)

∂te

]
∆x
∆y
∆z
∆te

 + ε



Remember that ∆ρ(s) is the difference between the measured pseudorange and the expected geomet-
ric range between a satellite position and the apriori position. We can calculate an updated absolute
position and clock bias by adding [∆x,∆y,∆z,∆te] to the apriori values [x0, y0, z0, te0 ]. We’re pretty

close to a solution here, but we first need to calculate the partial derivatives
[

∂ρ(s)

∂x
∂ρ(s)

∂y
∂ρ(s)

∂z
∂ρ(s)

∂te

]
.

Let’s work on this for the term ∂ρ(s)

∂x . We will need the chain rule:

∂un

∂x
= nun−1 ∂u

∂x
(8)

and we set u to be the term under the square-root in the range expression in Equation 2:

u = (x(s) − x)2 + (y(s) − y)2 + (z(s) − z)2 (9)

we can write:

∂ρ(s)

∂x
=

∂
√

(x(s) − x)2 + (y(s) − y)2 + (z(s) − z)2
∂x

(10)

=
∂
√
u

∂x

=
1

2
u−

1
2
∂u

∂x

=
1

2u
1
2

∂[(x(s) − x)2 + (y(s) − y)2 + (z(s) − z)2]

∂x

=
1

2u
1
2

∂[(x(s) − x)2]

∂x

=
2(x(s) − x)

2u
1
2

(−1)

=
x− x(s))
ρ(s)

Doing this for all the partial derivatives at the apriori position gives us:

∂ρ(s)

∂x
=

x0 − x(s)

ρ
(s)
0

(11)

∂ρ(s)

∂y
=

y0 − y(s)

ρ
(s)
0

(12)

∂ρ(s)

∂z
=

z0 − z(s)

ρ
(s)
0

(13)

∂ρ(s)

∂te
= c (14)

Equation 15 follows from earlier expressions of δtu. Note that ρ
(s)
0 is the geometric range from

the apriori position to satellite s, which can be calculated without needing the precise position. Any



model corrections that could be applied (e.g., troposphere, . . . ) could go in there, too. With these
expressions for the partial derivatives, we can rewrite Equation 8:

∆ρ(s) =
[

x0−x(s)

ρ
(s)
0

y0−y(s)

ρ
(s)
0

z0−z(s)

ρ
(s)
0

c
]

∆x
∆y
∆z
∆te

 + ε (15)

Assuming that we have n satellites in view, each of which giving us pseudorange measurements
ρ(1), . . . , ρ(n), we can set up a linear system of equations:


∆ρ(1)

∆ρ(2)

...
∆ρ(n)

 =



x0−x(1)

ρ
(1)
0

y0−y(1)

ρ
(1)
0

z0−z(1)

ρ
(1)
0

c

x0−x(2)

ρ
(2)
0

y0−y(2)

ρ
(2)
0

z0−z(2)

ρ
(2)
0

c

...
...

...
...

x0−x(n)

ρ
(n)
0

y0−y(n)

ρ
(n)
0

z0−z(n)

ρ
(n)
0

c




∆x
∆y
∆z
∆te

 + ε (16)

5 Solving the System

Equation 16 is of the form Gm = d where G is the matrix with the partial derivatives, d is the vector
with the pseudorange differences and m is the vector with the unknowns. We can solve this with
least squares techniques to minimize the sum of squared residuals, for instance, using the normal
equations:

m = (GTG)−1GT d (17)

We can also introduce a weight matrix W to, for instance, put less emphasis on satellites at low
elevation angles:

m = (GTWG)−1GTWd (18)

Once we have a solution m = [∆x,∆y,∆z,∆te] we can add these values to the apriori values to get
an update: 

xnew
ynew
znew
tenew

 =


x0
y0
z0
te0

 +


∆x
∆y
∆z
∆te

 (19)

and iterate until improvements are small.
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