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Measurement Models

• Code Phase Measurement (last week)
• Carrier Phase Measurement (today!)

Misra and Enge, 2011, GPS–Signals, Measurements, and Performance
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Carrier Phase Measurement

• also: carrier beat phase measurement
• difference between phases of receiver generated carrier signal

and carrier received from satellite
• is indirect and ambiguous measurement of signal transit time
• phase at time t :

φ(t) = φu(t)− φs(t − τ) + N

• • φu(t) phase of rcx generated signal
• φS(t − τ) phase of satellite signal received at t (sent at t − τ )
• τ : still transit time
• N: integer ambiguity, must be estimated: integer ambiguity

resolution
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Phase (Integer) Ambiguity

http://nptel.ac.in/courses/105104100/lectureB_8/B_8_4carrier.htm
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Cycle Slip

• receiver has to track phase continuously
• loss of lock (tree, etc): cycle slip – integer number of cycles jump

in phase data
• must be fixed during analysis (software, several strategies;

sometimes manually)

courtesy: Jeff Freymueller
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Carrier Phase Measurement

φ = 1
λ ∗ (r + I + T ) + f ∗ (δtu − δts) + N + εφ

(units of cycles) where
• λ, f - carrier wavelength, frequency
• r - geometric range
• I,T - ionospheric, tropospheric propagation errors (path delays)
• δtu, δts - receiver, satellite clock biases
• N - phase ambiguity
• εφ - error term (phase)

compare to code measurement eqn (units of distance):

ρ = r + I + T + c ∗ (δtu − δts) + ερ

Code tracking is unambiguous (because codes are long!)
σ(ερ) ≈ 0.5 m
σ(εφ) ≈ 0.025 cycle (5 mm)
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Phase Ambiguity

http://nptel.ac.in/courses/105104100/lectureB_8/B_8_4carrier.htm
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Elimination of “Nuisance” Parameters

• difference multiple satellite and receiver data to eliminate clock
biases

• “single difference” between 2 receivers and 1 satellite: eliminates
satellite clock

• “single difference” between 1 receiver and 2 satellites: eliminates
receiver clock

• “double difference” between those differences removes both
clocks

• BUT: you estimate baseline vector between receivers rather than
their positions!

• no linearly dependent observations, careful choosing (by software)
• some estimate clock errors intead
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Single + Double Difference

http://www.fig.net/resources/publications/figpub/pub49/figpub49.asp
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Single Difference

Carrier phase measurement from satellite k at receiver u:

φ
(k)
u = 1

λ ∗ (r (k)u + I(k)u + T (k)
u ) + f ∗ (δtu − δt(k)) + N(k)

u + ε
(k)
φ,u

Carrier phase measurement from satellite k at receiver r :

φ
(k)
r = 1

λ ∗ (r (k)r + I(k)r + T (k)
r ) + f ∗ (δtr − δt(k)) + N(k)

r + ε
(k)
φ,r

receiver single difference:

φ
(k)
ur = φ

(k)
u − φ

(k)
r

=
1
λ
∗ (r (k)ur + I(k)ur + T (k)

ur ) + f ∗ δtur + N(k)
ur + ε

(k)
φ,ur

“short” baseline (ionosphere, troposphere errors small)

φ
(k)
ur =

r (k)ur

λ
+ f ∗ δtur + N(k)

ur + ε
(k)
φ,ur
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Single Difference

want to estimate xur = xu − xr
hidden in range difference (short
baselines):

r (k)ur = r (k)u − r (k)r = −1(k)
r xur

1(k)
r is unit vector pointing from

receiver r to satellite k (different
treatment for longer baselines)

Misra and Enge, 2011, GPS–Signals, Measurements, and
Performance
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Double Difference

Form single differences for receivers u, r and satellite l

φ
(l)
ur = φ

(l)
u − φ

(l)
r

=
r (l)ur

λ
+ f ∗ δtur + N(l)

ur + ε
(l)
φ,ur

Form double difference:

φ
(kl)
ur = φ

(k)
ur − φ

(l)
ur

= (φ
(k)
u − φ

(k)
r )− (φ

(l)
u − φ

(l)
r )

=
r (kl)
ur

λ
+ N(kl)

ur + ε
(kl)
φ,ur
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Triple Difference

• adds difference in time
• difference double difference from epoch t1 and t0
• can be used to eliminate phase ambiguity
• but removes most of geometric strength and hence gives weak

positions
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Geometry Issues

• Position estimate depends on quality (ε) and geometry (θ) of
range measurement

Misra and Enge, 2011, GPS–Signals, Measurements, and Performance
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Carrier Phase Measurement

φ = 1
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Integer Ambiguity Resolution 1/5

• uncertainty in integer estimation depends on carrier wavelength
• increase wavelength –> decrease uncertainty: create wide lane

measurement:

φL12 = φL1 − φL2

= r(fL1 − fL2)/c + (NL1 − NL2) + εφL12

= r/λL12 + NL12 + εφL12

where λL12 = c/(fL1 − fL2) = 0.862 m
fL12 = fL1 − fL2 = 347.82 MHz
NL12 is integer ambiguity
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Integer Ambiguity Resolution 2/5

Using

ρL1 = r + ερL1

we can form estimate of NL12 as:

NL12 ≈
[
φL12 −

ρL1

λL12

]
roundoff

Here, σ(NL12) ≈ 1.2 cycles;
compared to σ(NL1) ≈ 5 cycles
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Integer Ambiguity Resolution 3/5

• wide lane measurements much noisier than L1,L2 measurements
• narrow lane combination φLn = φL1 + φL2 less noisy
• though harder to resolve ambiguities with narrow lane
• position estimates would be more precise
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Integer Ambiguity Resolution (one at a time) 4/5

With correct NL12 can determine NL1, NL2. Measurement eqs:

φL1 = r/λL1 + NL1 + εφL1

φL2 = r/λL2 + NL2 + εφL2

after solving both for r and equating, we get:

NL1 −
λL2

λL1
NL2 = φL1 −

λL2

λL1
φL2 + ε

We have

NL1 − NL2 = NL12

NL2 = NL1 − NL12

So, we can solve for NL1,NL2:

NL1 =

[
λL2

λL1
− 1

]−1 [λL2

λL1
NL12 − φL1 +

λL2

λL1
φL2

]
Uncertainty σ(NL1) ≈ 6σ(εφL1

); data quality determines success.
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Integer Ambiguity Resolution (as a set) 5/5

• 1) discard integer nature of ambiguities and find least squares
‘float solution’

• 2) map to integer (decorrelate error elipse)
• 3) ‘fixed solution’: estimate position (other parameters) w/ integer

ambiguities

http://www.citg.tudelft.nl/en/about-faculty/departments/geoscience-and-remote-sensing/
research-themes/gps/lambda-method/
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