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“Guess the Process”

This more of a “different angles on the same process:”
http://topex.ucsd.edu/Ecuador/
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Parameter Estimation

• We have measurements and an idea about the process - how do
we get best estimate for parameters? E.g.,

d = a + b ∗ x

where
• d are the measurements (column vector)
• x are the “coordinates” of the measurements (column vector)
• a,b describe the process (scalars)

• What is a best estimate?
• Yes, inference of parameters from measurements is an

estimation! WHY?
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Matrix Notation (annotate here...)
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Parameter Estimation

Let’s look at an example (least_squares.py) . . .
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Least Squares Solution

• least squares is general approach to solve linear systems of
equations

• linear systems obey superposition and scaling
• assume mi are model parameters, which of these are linear?

d = m1 + m2x − (1/2)m3x2

d = (m1 −m2x)1/2 −m2
3x

• General form: d = Gm + ε

• d is data vector
• G design/model/system matrix || Green’s functions
• m model parameters that “tweak” G
• ε residuals / measurement errors

• Solve for m!
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Least Squares Solution

• General form: d = Gm + ε

• Least squares solution: mest = (GTG)−1GTd

How to get there?

• Variational approach:

• assume optimal solution minimizes length, j of the residual vector r :
j = rT r

• Probabilistic approach:

• assume optimal solution is most probable one (maximum
likelihood), derived from probability density function of observing
measurements

• Geometric approach:

• solution is a projection from data space into model space, what is
projection of vector b in direction of vector a

Most problems result in same least squares solution
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Variational Approach

• choose solution where residual vector r has minimum length
• most common is standard geometric / Euclidean length / L2 -

norm:

L2 = (r2
1 + r2

2 + r2
3 + r2

4 . . . )
−1/2 =

√√√√ N∑
i=1

r2
i

• L1 - norm less sensitive to bias from single bad points:

L1 = |r1|+ |r2|+ |r3|+ |r4| · · · =
N∑

i=1

|ri |

Solutions:

• Least squares solution: mest = (GTG)−1GTd
• L1 solution: GTRGmest = GTRd

• R: diagonal weighting matrix : Ri,i = 1/|ri |
• nonlinear, need iterative alorithm (IRLS) to solve
• IRLS starts with m0

est = mest,L2 solution, construct R0 using
residuals

• iterate until some threshold reached
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Variational Approach

• d = Gm + ε

• calculate mest = (GTG)−1GTd
• get residuals rest = d−Gmest

• define j(m) = rTr = (d−Gm)T(d−Gm)

• find minimum j : δj(mest) = 0
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Confidence Intervals

• if independent and normally distributed data errors:
• COV (mL2) = σ2(GT G)−1

• get 95% confidence intervals:
• each model parameter mi has normal distribution
• mean given by corresponding mi,true

• variance COV (mL2)i,i

mL2 ± 1.96(diag(COV (mL2)))
1/2

• 1.96 comes from:

1
σ
√

2π

∫ 1.96σ

−1.96σ
e− x2

2σ2 dx ≈ 0.95
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Parameter Estimation // Inverse Problems are hard . . .

• model existence

• There may be no model that fits data (exactly)
• physics are approximate (or wrong)
• data contain noise

• model uniqueness

• There may be other models than mtrue that satisfy data
• e.g., non-trivial null space Gm0 = 0
• smoothing or other biases may affect solution
• model resolution analysis is critical!

• instability

• small change in measurement results in enormous change in
parameter estimates

• possibly stabilize such problems regularization (smoothing)
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