GEOS F493 / F693
 Geodetic Methods and Modeling

- Lecture 10a: Modeling Plate Kinematics -

Ronni Grapenthin rgrapenthin@alaska.edu
 Elvey 413B (907) 474-7286

November 04, 2019

Guess The Process

P299 (Duckworth_CN2007) NAM08

Processed Daily Position Time Series

Source file: P299.pbo.namo8.pos Last epoch plotted: 2015-11-02 12:00:00

Guess The Process

P299 (Duckworth_CN2007) NAM08

Processed Daily Position Time Series

Guess The Process

P299 (Duckworth_CN2007) NAM08

Processed Daily Position Time Series

Source file: P299.pbo.namos.pos Last epoch plotted: 2015-11-02 12:00:00

Guess The Process

Figure 3. GcogleEarth view of P299 and landslide. The slide originates in the small bowl to the south of P299 and flow downhill into a lobe at the base. Original image (left) has

Tectonic Activity

Plates and Boundaries

- plates are rigid, relative motions occur on their boundaries
- how many plates / microplates are there?
- plate boundaries have some finite width: plate boundary zones
- can be narrow: < 10 km
- or very wide: 500 - 1000 km
- relative motion occurs on faults, or breaks in the Earth's lithosphere

Faults

- Faults are (approximately) planar surfaces
- Motion on either side of the surface relative to the other
- Direction of motion is slip direction
- Motion driven by plate tectonics
- Nature of slip depends on depth:

- shallow: fault stuck together (friction), slip occurs

Valerie Thomas, USGS \& Anthony Guarino, Caltech suddenly in earthquakes

- deep: fault slips mostly at steady rate

Types of Faults

Valerie Thomas, USGS \& Anthony Guarino, Caltech

Motion on a sphere

- rigid motion on sphere is about geometric axis
- 2 equivalent ways to describe:
- pole of rotation (Euler Pole) and angular speed (deg/Myr)
- angular velocity vector

Motion on a sphere

- relative plate motion direction given by transform fault direction
- transform fault indicates small circle about rotation pole
- relative plate motion rate given by seafloor magnetic isochrons
- GPS velocities are direct measure of plate motion direction and magnitude
- GPS velocities are normal to great circle passing through pole of rotation

Geologic Plate Motion Models

- Relative plate motion models based on a combination of
- Mid-ocean ridge spreading rate (from marine magnetic anomalies)
- transform fault azimuths
- earthquake slip vectors (hard)
- some plates have little or no data (Caribbean, Philippine Sea Plates)
- Common models: NUVEL-1, revised to NUVEL-1A
- New model: MORVEL (DeMets et al, 2010)

Motion on a sphere

Conversion between Euler Parameters and Rotation

 Vector- Rotation Vector: $\Omega\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$
- Euler Parameters: latitude λ, longitude ϕ, angular speed s
- Euler to Rotation:

$$
\begin{aligned}
\omega_{x} & =s \cos (\lambda) \cos (\phi) \\
\omega_{y} & =s \cos (\lambda) \sin (\phi) \\
\omega_{z} & =s \sin (\lambda)
\end{aligned}
$$

- Rotation to Euler:

$$
\begin{aligned}
\lambda & =\arctan \left(\frac{\omega_{z}}{\sqrt{\omega_{x}^{2}+\omega_{y}^{2}}}\right) \\
\phi & =\arctan \left(\frac{\omega_{y}}{\omega_{x}}\right) \\
s & =\sqrt{\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}}
\end{aligned}
$$

Calculating Site Velocities

- Easiest to use angular velocity vector to compute site velocities
- Cross product of site location P (ECEF: $P=[X, Y, Z])$ with plate angular velocity:

$$
\vec{v}=\vec{\omega} \times \vec{P}
$$

- expand cross product to rewrite as matrix equation:

$$
\begin{aligned}
\vec{v} & =\vec{\omega} \times \vec{P} \\
& =\left(Z \omega_{y}-Y \omega_{z}\right) \hat{x}+\left(X \omega_{z}-Z \omega_{x}\right) \hat{y}+\left(Y \omega_{x}-X \omega_{y}\right) \hat{z}
\end{aligned}
$$

Calculating Site Velocities

- Easiest to use angular velocity vector to compute site velocities
- Cross product of site location P (ECEF: $P=[X, Y, Z])$ with plate angular velocity:

$$
\vec{v}=\vec{\omega} \times \vec{P}
$$

- expand cross product to rewrite as matrix equation:

$$
\begin{aligned}
\vec{v} & =\vec{\omega} \times \vec{P} \\
& =\left(Z \omega_{y}-Y \omega_{z}\right) \hat{x}+\left(X \omega_{z}-Z \omega_{x}\right) \hat{y}+\left(Y \omega_{x}-X \omega_{y}\right) \hat{z} \\
& =\left[\begin{array}{l}
Z \omega_{y}-Y \omega_{z} \\
X \omega_{z}-Z \omega_{x} \\
Y \omega_{x}-X \omega_{y}
\end{array}\right]
\end{aligned}
$$

Calculating Site Velocities

- Easiest to use angular velocity vector to compute site velocities
- Cross product of site location P (ECEF: $P=[X, Y, Z])$ with plate angular velocity:

$$
\vec{v}=\vec{\omega} \times \vec{P}
$$

- expand cross product to rewrite as matrix equation:

$$
\begin{aligned}
\vec{v} & =\vec{\omega} \times \vec{P} \\
& =\left(Z \omega_{y}-Y \omega_{z}\right) \hat{x}+\left(X \omega_{z}-Z \omega_{x}\right) \hat{y}+\left(Y \omega_{x}-X \omega_{y}\right) \hat{z} \\
& =\left[\begin{array}{l}
Z \omega_{y}-Y \omega_{z} \\
X \omega_{z}-Z \omega_{x} \\
Y \omega_{x}-X \omega_{y}
\end{array}\right] \\
{[\square] } & =\left[\begin{array}{l}
\square
\end{array}\right]
\end{aligned}
$$

Calculating Site Velocities

- Easiest to use angular velocity vector to compute site velocities
- Cross product of site location P (ECEF: $P=[X, Y, Z])$ with plate angular velocity:

$$
\vec{v}=\vec{\omega} \times \vec{P}
$$

- expand cross product to rewrite as matrix equation:

$$
\left.\begin{array}{rl}
\vec{v} & =\vec{\omega} \times \vec{P} \\
& =\left(Z \omega_{y}-Y \omega_{z}\right) \hat{x}+\left(X \omega_{z}-Z \omega_{x}\right) \hat{y}+\left(Y \omega_{x}-X \omega_{y}\right) \hat{z} \\
& =\left[\begin{array}{l}
Z \omega_{y}-Y \omega_{z} \\
X \omega_{z}-Z \omega_{x} \\
Y \omega_{x}-X \omega_{y}
\end{array}\right] \\
{[} \\
{[}
\end{array}\right]=\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \quad \$
$$

Calculating Site Velocities

- Easiest to use angular velocity vector to compute site velocities
- Cross product of site location P (ECEF: $P=[X, Y, Z])$ with plate angular velocity:

$$
\vec{v}=\vec{\omega} \times \vec{P}
$$

- expand cross product to rewrite as matrix equation:

$$
\begin{aligned}
& \vec{v}=\vec{\omega} \times \vec{P} \\
&=\left(Z \omega_{y}-Y \omega_{z}\right) \hat{x}+\left(X \omega_{z}-Z \omega_{x}\right) \hat{y}+\left(Y \omega_{x}-X \omega_{y}\right) \hat{z} \\
&=\left[\begin{array}{l}
Z \omega_{y}-Y \omega_{z} \\
X \omega_{z}-Z \omega_{x} \\
Y \omega_{x}-X \omega_{y}
\end{array}\right] \\
& {[} \\
& {[] }=\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
\end{aligned}
$$

Calculating Site Velocities

- Easiest to use angular velocity vector to compute site velocities
- Cross product of site location P (ECEF: $P=[X, Y, Z])$ with plate angular velocity:

$$
\vec{v}=\vec{\omega} \times \vec{P}
$$

- expand cross product to rewrite as matrix equation:

$$
\begin{aligned}
\vec{v} & =\vec{\omega} \times \vec{P} \\
& =\left(Z \omega_{y}-Y \omega_{z}\right) \hat{x}+\left(X \omega_{z}-Z \omega_{x}\right) \hat{y}+\left(Y \omega_{x}-X \omega_{y}\right) \hat{z} \\
& =\left[\begin{array}{l}
Z \omega_{y}-Y \omega_{z} \\
X \omega_{z}-Z \omega_{x} \\
Y \omega_{x}-X \omega_{y}
\end{array}\right] \\
{\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
\end{aligned}
$$

Calculating Site Velocities

- units: Ω usually in ${ }^{\circ} / M y r$

$$
\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]=\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

Calculating Site Velocities

- units: Ω usually in ${ }^{\circ} / M y r$

$$
\left[\begin{array}{l}
v_{X} \\
v_{y} \\
v_{z}
\end{array}\right]=\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

- want $m / y r$:
- time-factor: 10^{-6}
- degrees-to-radians-to-arclength: $\frac{\pi}{180} R$
- where R is mean Earth radius: $R=6,378,137 \mathrm{~m}$

Calculating Site Velocities

- units: Ω usually in ${ }^{\circ} / M y r$

$$
\left[\begin{array}{l}
v_{X} \\
v_{y} \\
v_{z}
\end{array}\right]=\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

- want $m / y r$:
- time-factor: 10^{-6}
- degrees-to-radians-to-arclength: $\frac{\pi}{180} R$
- where R is mean Earth radius: $R=6,378,137 \mathrm{~m}$
- \vec{v} in geocentric coordinates $\left[v_{x}, v_{y}, v_{z}\right]$ units of $m / y r$:

$$
\vec{v}=10^{-6} \frac{\pi}{180} R\left(\vec{\omega}_{\text {deg } / \text { Myr }} \times \vec{P}\right)
$$

Calculating Site Velocities

- units: Ω usually in ${ }^{\circ} / M y r$

$$
\left[\begin{array}{l}
v_{X} \\
v_{y} \\
v_{z}
\end{array}\right]=\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

- want $m / y r$:
- time-factor: 10^{-6}
- degrees-to-radians-to-arclength: $\frac{\pi}{180} R$
- where R is mean Earth radius: $R=6,378,137 \mathrm{~m}$
- \vec{v} in geocentric coordinates $\left[v_{x}, v_{y}, v_{z}\right.$] units of $m / y r$:

$$
\vec{v}=10^{-6} \frac{\pi}{180} R\left(\vec{\omega}_{\text {deg } / \mathrm{Myr}} \times \vec{P}\right)
$$

- need location conversion from geodetic to geocentric frame (lat,lon to X, Y, Z)
- need velocity conversion from geocentric to local frame ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ to $\mathrm{N}, \mathrm{E}, \mathrm{U}$)

Recall: Geodetic to Geocentric

$$
\begin{array}{ll}
X=(N+h) \cos (\lambda) \cos (\phi) & \\
Y=(N+h) \cos (\lambda) \sin (\phi) & N=\frac{a^{2}}{\sqrt{a^{2} \cos ^{2} \lambda+b^{2} \sin ^{2}(\lambda)}} \\
Z=\left(\frac{a^{2}}{b^{2}} N+h\right) \sin (\lambda) & b=-f a+a
\end{array}
$$

- a: semi-major axis of ellipsoid (WGS84: 6378137.0 m)
- f : flattening of ellipsoid (WGS84: 1/298.257223563)
- b: semi-minor axis of ellipsoid
- λ, ϕ, h : geodetic latitude, longitude, height (above ellipsoid)
- X, Y, Z : ECEF Cartesian coordinates

Recall: Geocentric to Local

- origin of this datum is point of your choice on the surface of the Earth
- right handed coordinate system:
- U is vertical. i.e., perpendicular to local equipotential surface, points up
- N is in local horizontal plane and points to geographic north
- E is in local horizontal plane and points to geographic east
- as ECEF (XYZ) units are
 meters, local units are meters, too

Recall: Geocentric to Local

Combine 3 rotations to align geocentric with NEU frame:

$$
\begin{aligned}
{\left[\begin{array}{c}
v_{N} \\
v_{E} \\
v_{U}
\end{array}\right] } & =\left[\begin{array}{ccc}
-\sin (\lambda) \cos (\phi) & -\sin (\lambda) \sin (\phi) & \cos (\lambda) \\
-\sin \phi) & \cos (\phi) & 0 \\
\cos (\lambda) \cos (\phi) & \cos (\lambda) \sin (\phi) & \sin (\lambda)
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] \\
\vec{V}_{\text {ocoal }} & =R \vec{V}_{\text {ecef }}
\end{aligned}
$$

Recall: Geocentric to Local

Combine 3 rotations to align geocentric with NEU frame:

$$
\begin{aligned}
{\left[\begin{array}{c}
v_{N} \\
v_{E} \\
v_{U}
\end{array}\right] } & =\left[\begin{array}{ccc}
-\sin (\lambda) \cos (\phi) & -\sin (\lambda) \sin (\phi) & \cos (\lambda) \\
-\sin \phi) & \cos (\phi) & 0 \\
\cos (\lambda) \cos (\phi) & \cos (\lambda) \sin (\phi) & \sin (\lambda)
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] \\
\vec{V}_{\text {tocal }} & =R \vec{V}_{\text {ecef }}
\end{aligned}
$$

- inverse matrix of R can be used to convert local to ECEF
- since R is rotation matrix:

$$
R^{-1}=R^{T}
$$

- Therefore:

$$
\vec{V}_{\text {ecet }}=R^{T} \vec{V}_{\text {local }}
$$

Estimating Plate Angular Velocity

$$
\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]=\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

Estimating Plate Angular Velocity

$$
\begin{aligned}
{\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \\
d & =G m
\end{aligned}
$$

Estimating Plate Angular Velocity

$$
\begin{aligned}
{\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \\
d & =G m
\end{aligned}
$$

Estimating Plate Angular Velocity

$$
\begin{aligned}
{\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \\
d & =G m
\end{aligned}
$$

- Invert for m :

$$
\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]=\left(G^{T} W G\right)^{-1} G^{T} W \vec{v}
$$

Estimating Plate Angular Velocity

$$
\begin{aligned}
{\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & Z & -Y \\
-Z & 0 & X \\
Y & -X & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \\
d & =G m
\end{aligned}
$$

- Invert for m :

$$
\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]=\left(G^{T} W G\right)^{-1} G^{T} W \vec{v}
$$

- where the weight matrix W is the inverse of the velocity covariance matrix C_{V} (comes from processing)
- model covariance matrix is $C_{\omega}=\left(G^{T} C_{V}^{-1} G\right)^{-1}$

Estimating Plate Angular Velocity

- How many site velocities do you need?

Estimating Plate Angular Velocity

- How many site velocities do you need?
- 3 parameters in plate angular velocity vector

Estimating Plate Angular Velocity

- How many site velocities do you need?
- 3 parameters in plate angular velocity vector
- 3 data in each site velocity $\left(v_{N}, v_{E}, v_{U}\right)$
- But: plate model predicts no vertical - only horizontals count!

Estimating Plate Angular Velocity

- How many site velocities do you need?
- 3 parameters in plate angular velocity vector
- 3 data in each site velocity $\left(v_{N}, v_{E}, v_{U}\right)$
- But: plate model predicts no vertical - only horizontals count!
- Need velocities for at least 2 sites to constrain plate angular velocity
- The more GPS velocities and the farther apart, the better determined is plate angular velocity

Example: REVEL-2000

REVEL-2000

$30 \mathrm{~mm} / \mathrm{yr} \rightleftharpoons 30 \mathrm{~mm} / \mathrm{yr} \bigcirc$
Velocities are with respect to ITRF-97

Example: REVEL-2000

- REVEL = "recent velocities"
- Global plate motion model based entirely on GPS data for 19 plates
- Data from 1993 though 2000.
- combination of many continuous sites and repeat campaign survey data
- first model with essentially global coverage
- 2/3 of tested plate pairs agree within uncertainties with NUVEL-1A (geologic 3Myr average)

Example: REVEL-2000

- example of data used in model
- long time series in ITRF97
- PPP solutions
- fit linear trends plus offset (here: combination of co-located sites)
- outlier rejection, quality control
- 345,000 station days

Example: GEODVEL

Argus et al., 2010, GJI
Rotation poles and confidence ellipses for adjacent plate pairs for GEODVEL (open circles, yellow) and NUVEL-1A (open squares, violet)

Example: GEODVEL

- GEODVEL = "GEODesy VELocity"
- based on GPS, VLBI, SLR, DORIS in ITRF2005
- relative angular velocities for 11 major plates
- also provides absolute plate poles

Example: GEODVEL

Plate Fixed Reference Frames

- "Velocities with respect to PLATE-NAME"
- very convenient for visualization purposes and modeling of tectonic deformation
- To convert into plate-fixed frame we need plate motion and velocities in the same geodetic frame (e.g., ITRF2008)
- Transformation:

Plate Fixed Reference Frames

- "Velocities with respect to PLATE-NAME"
- very convenient for visualization purposes and modeling of tectonic deformation
- To convert into plate-fixed frame we need plate motion and velocities in the same geodetic frame (e.g., ITRF2008)
- Transformation: subtract predicted motion based on plate angular velocity from observed velocity

Reference Frames - ITRF vs. fixed (stable North America)

courtesy: Jeff Freymueller, UAF

Reference Frames - stable North America

- extension across Basin and Range
- Shear on San Andreas System
- Subduction strain in Cascadia, Alaska
- et al.

NOAM Poles

- past studies: common that NOAM poles not within each others' confidence ellipses
- Difference between SNARF and Sella et al. (2007) is rotation about pole in SE US.
courtesy: Jeff Freymueller, UAF

Why is NOAM Pole poorly determined?

Why is NOAM Pole poorly determined?

courtesy: Jeff Freymueller, UAF

Why is NOAM Pole poorly determined?

- tectonics in western North America
- glacial isostatic adjustment in northern North America
- SE is thought to be stable on geologic and geodetic time scales
- limited area to determine plate angular velocity, susceptible to bias
courtesy: Jeff Freymueller, UAF

