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The Elastic Rebound Model

IRIS

• Between earthquakes: steady
motion on the fault

• Loads fault, strain
accumulates in vicinity of fault

• During earthquakes: fault
breaks, strain is released and
fault vicinity catches up with
far field motion

• Elastic system: interseismic
strain accumulation is opposite
of co-seimic strain release - no
net straining.
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Wallace Creek

courtesy: David Lynch
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The deformation cycle

Eric Clais

• Interseismic: constant velocity
at given site - linear
displacements

• Co-seismic: Step in timeseries
controlled by magnitude,
locking depth and distance of
seismic rupture

• Post-seismic: afterslip,
visco-elastic relaxation,
poroelasticity; decay related to
mechanism and lithospheric
rheology
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The deformation cycle

Roberto Devoti, INGV

• Earthquake: sudden slip on fault
• Mw 4-5: a few centimeters average slip on fault
• Mw 7: a few meters average slip on fault
• Mw 9: 10-20+ meters average slip on fault
• L’Aquila earthquake: Mw 5.9 - displacements depend on distance,

magnitude, fault geometry
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Deformation cycle: Interseismic (Fairweather Fault)

Jeff Freymueller
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The deformation cycle: Interseismic

Tong et al, 2013, JGR
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Co-Seismic: The 2002 Mw=7.9 Denali Earthquake

courtesy: USGS
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Co-Seismic: The 2002 Mw=7.9 Denali Earthquake

courtesy: USGS
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Co-Seismic: The 2002 Mw=7.9 Denali Earthquake

courtesy: David Schwartz, USGS
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Co-Seismic: The 2002 Mw=7.9 Denali Earthquake

Hreinsdóttir et al., JGR, 2006
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The deformation Cycle: Post-seismic

Wang et al., 2012, Nature
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The deformation Cycle: Post-seismic

Wang et al., 2012, Nature
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The deformation Cycle – Slow Slip

Rogers & Dragert 2003, Science
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Physics of Faults

Eric Calais

• stick-slip sliding (seismic)
• 2 sides of interface stuck

together: friction
• slip occurs when friction is

overcome
• slip controlled by dynamic

friction, healing
• stable sliding (aseismic):

• 2 sides slide continuously
past each other

• slip occurs all the time
• slip controlled by plastic,

ductile or viscous yielding

• transient slip also occurs (slow
slip events)

18 / 37



Geodetic data→ Slip on a Fault

How to get this?

Hreinsdóttir et al., JGR, 2006
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Geodetic data→ Slip on a Fault

Eric Calais
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Green’s Functions

• Is basically an impulse unit response
• Represents Earth structure ( “effect of

propagation from source to receiver”)

• Think “Given this Earth structure, how
much displacement will I get here when
the fault over there slips 1 unit (e.g., 1 m)”

• Due to linearity (in slip amplitude) you
can scale this with different amounts of
slip, say 25 m or 33 cm which results in
scaled displacement

Eric Calais
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Green’s Functions

• Simple earthquake: 1 fault surface with
uniform strike dip, rake, slip

• Displacement at a location can be written
as unit slip on that geometry times
amount of slip

u = G ∗ s

• u is data vector
• s is model vector
• G is design matrix made of Green’s

functions

• G can be analytical expressions of
derived from numerical models

Eric Calais
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Green’s Functions

• Complex earthquake: non-uniform strike
dip, rake, slip

• complex fault geometry
• displacement at given site is sum of

contributions of N fault patches

uj =
N∑
i

Gij ∗ si Eric Calais
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Green’s functions

Which primary directions of slip can we distinguish?

• Strike-Slip (ss), Dip-Slip (ds), Opening (op)
• usually separated into their own Green’s functions:

uj =
N∑

i=1

[
Gss

ij sss
i + Gds

ij sds
i + Gop

ij sop
i

]

• further separated into 3 displacement components:

uj , x =
N∑

i=1

[
Gss

ij,xsss
i + Gds

ij,xsds
i + Gop

ij,xsop
i

]

uj , y =
N∑

i=1

[
Gss

ij,ysss
i + Gds

ij,ysds
i + Gop

ij,ysop
i

]

uj , z =
N∑

i=1

[
Gss

ij,zsss
i + Gds

ij,zsds
i + Gop

ij,zsop
i

]
• What kind of problem are we headed towards?
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Green’s Functions

• Analytical solution for elastic half-space exist
• widely used formulation: Okada, Y., Internal deformation due to

shear and tensile faults in a half-space, Bull. Seismo. Soc. Amer.,
v. 82, 1018-1040, 1992.

• Original Fortran code is most reliable, implementations in other
languages exist

• expressions for more complex earth structure exist
• layered elastic
• visco-elastic half space
• elastic over visco-elastic
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Solving for Slip

• Displacement at a point j on Earth’s surface caused by slip on N
fault patches can be written as:

uj =
N∑

i=1

Gijsi

• This looks familiar
u = Gs

• u is data vector
• s is model vector
• G is design matrix made of Green’s functions
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Solving for Slip

Eric Calais

For prior 1D problems G was a matrix
How to deal with 2D problem of slip on fault?
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Solving for Slip

This should be straight-forward to turn into G

How about this?

Linearize!
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Solving for Slip

Eric Calais

29 / 37



Solving for Slip

Sigrun Hreinsdottir

With 224 GPS sites and 697 fault tiles solving for dip-slip and
strike-slip, what problem are we running into?

Underdetermined system.
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Solving for Slip

Sigrun Hreinsdottir

• observations at 225 GPS sites: 675 data (if vertical helps)
• 697 fault tiles, ss, ds: 1394 unknowns
• no enough data to constrain number of unknowns
• also often an issue: unphysical oscillatory slip
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Regularization / Smoothing

• Idea: Minimize the rate of change of slip with position
• “rate of change of slip” is curvature
• Laplacian:

∇2 =
δ2

δx2 +
δ2

δy2 +
δ2

δz2

• Practice: Minimize sum of partial second differentials of slip for
each fault patch

• Can be solved using finite-difference method for a function P

δ2P(x)

δx2 ≈ P(x −∆x)− 2P(x) + P(x −∆x)

∆x2
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Regularization / Smoothing

• Our function P(x) is slip s
which varies along-strike (x)
and down-dip (y)

• For patch i finite difference
approximation of Laplacian is
(nve = number of vertical
elements, nhe = horiztonal):

Eric Calais

li =
si−nve − 2si + si+nve

∆x2 +
si−1 − 2si + si+1

∆x2
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Regularization / Smoothing

Eric Calais
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Regularization / Smoothing

• The original problem was:

[u] =
[

Gss Gds
] [ sss

sds

]
• now it becomes:  u

0
0

 =

 Gss Gds
L 0
0 L

[ sss
sds

]

• amount of smoothing can be tuned using scalar smoothing factor
κ:  u

0
0

 =

 Gss Gds
κL 0
0 κL

[ sss
sds

]
• κ = 0: no smoothing, κ = 1 maximum smoothing
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Regularization / Smoothing

What can you recover? Checker board / Resolution test:

Sigrun Hreinsdottir
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Distributed Slip Inversion

This is how you get this:

Sigrun Hreinsdottir
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