

More Philosophy ...

Jon Claerbout (a geophysicist), as quoted in "WaveLab and Reproducible Research":

An article about computational science in a scientific publication is **not** the scholarship itself, it is merely **advertising** of the scholarship. The actual scholarship is the complete software development environment and the complete set of instructions which generated the figures.

More Philosophy ...

Jon Claerbout (a geophysicist), as quoted in "WaveLab and Reproducible Research":

An article about computational science in a scientific publication is **not** the scholarship itself, it is merely **advertising** of the scholarship. The actual scholarship is the complete software development environment and the complete set of instructions which generated the figures.

Implications ...

- publications should include data and code (example: Okada)
- figures should be reproducible by readers
- write code that others can use!

What does that mean?

Good

```
1 function fp = screw2d(x, xf, d, sdot)
  % function fp = screw2d(x, xf, d, sdot)
  % Computes fault-parallel slip rate for 2D screw dislocation
5 % with fault located at xf, with locking depth d and slip rate sdot.
   % Will compute at one or many locations x.
7 %
  % x
         column vector
9 % xf scalar
  % d
         scalar
11 % sdot scalar
13 if (d == 0)
      fp = sdot*0.5*sign(x-xf*ones(size(x)));
15 else
      fp = sdot*atan2((x-xf*ones(size(x))),d)/pi;
17 end
```

What does that mean?

Good

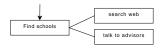
```
1 function fp = screw2d(x, xf, d, sdot)
% function fp = screw2d(x, xf, d, sdot)
3 %
% Computes fault-parallel slip rate for 2D screw dislocation
5 % with fault located at xf, with locking depth d and slip rate sdot.
% Will compute at one or many locations x.
7 %
% x column vector
9 % xf scalar
% d scalar
11 % sdot scalar
11 % sdot scalar
13 if ( d == 0 )
    fp = sdot*0.5*sign(x-xf*ones(size(x)));
15 else
    fp = sdot*atan2((x-xf*ones(size(x))),d)/pi;
17 end
```

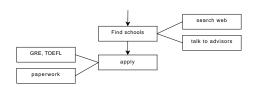
Bad

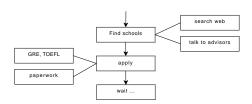
```
 \begin{array}{ll} & \textbf{function} & \texttt{fp} = \texttt{screw2d}(x, xf, d, sdot) \\ 2 & \textbf{if} (\texttt{d==0}) \texttt{fp} = \texttt{sdot} * 0.5 * \textbf{sign}(x - xf * \textbf{ones}(\textbf{size}(x))); \textbf{else} & \texttt{fp} = \texttt{sdot} * \textbf{atan2}((x - xf * \textbf{ones}(\textbf{size}(x))), d) / \textbf{pi}; \\ & \textbf{end} \end{array}
```

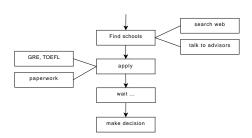
Example 1:

Getting into grad school ... and out.


Example 1:


Getting into grad school ... and out.


things to do:


apply, figure out where to go, visa stuff, class work, research, thesis ...

