
 Short Course on
Programming

2. Fundamental Programming
Principles I:

Variables, Data Types & Logic

Ronni Grapenthin

August 28, 2017

“The Uncomfortable Truths Well”,
http://xkcd.com/568 (April 13, 2009)

How does (computer) programming work?

Well, fist we should clearify terminology here!

What is a programming language?

What is a program?

Alright, what is it then?

Definitions (broad sense)
A programming language is an unambiguous artificial language that
is made up of a set of symbols (vocabulary) and grammatical rules
(syntax) to instruct a machine.

A program is a set of instructions in one or multiple programming
languages that specifies the behavior of a machine.

Compilation or interpretation is the verification of a program and its
translation into machine readable instructions of a specific platform.

Programming languages . . . continued

Two broad families can be identified:
1 Interpreted languages

An interpreter program is necessary to take in commands, check
syntax and translate to machine language at runtime (e.g., Matlab,
Unix Shell)

2 Compiled languages
Programs are translated and saved in machine language. At
runtime no additional program is necessary (e.g., C/C++).

Programming languages . . . continued

Two broad families can be identified:
1 Interpreted languages

An interpreter program is necessary to take in commands, check
syntax and translate to machine language at runtime (e.g., Matlab,
Unix Shell)

2 Compiled languages
Programs are translated and saved in machine language. At
runtime no additional program is necessary (e.g., C/C++).

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)

5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)

6 if errors, fix them and go back to (3)

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

Variables (1)

Definitions – a selection
Donald Knuth: A quantity that may possess different values as a
program is being executed.
Mehran Sahami: A box in which we stuff things – i.e. a box with
variable content.
Wikipedia: User defined keyword that is linked to a value stored in
computer’s memory (runtime).

The concept of a variable consists of:

name
type
value

Variables (1)

Definitions – a selection
Donald Knuth: A quantity that may possess different values as a
program is being executed.
Mehran Sahami: A box in which we stuff things – i.e. a box with
variable content.
Wikipedia: User defined keyword that is linked to a value stored in
computer’s memory (runtime).

The concept of a variable consists of:
name
type
value

Don’t even think that’s as simple as it sounds . . .

‘Hello World’ in Python
>>> prnt
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'prnt' is not defined

>>> print

>>> print "Hello
 File "<stdin>", line 1
 print "Hello
 ^
SyntaxError: EOL while scanning string literal

>>> print "Hello Wrld"
Hello Wrld

>>> print "Hello World"
Hello World

Don’t even think that’s as simple as it sounds . . .

‘Hello World’ in Python
>>> prnt
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'prnt' is not defined

>>> print

>>> print "Hello
 File "<stdin>", line 1
 print "Hello
 ^
SyntaxError: EOL while scanning string literal

>>> print "Hello Wrld"
Hello Wrld

>>> print "Hello World"
Hello World

‘Hello World’ on Shell
[glacier:~] grapenthin% ech
ech: Command not found.

[glacier:~] grapenthin% echo

[glacier:~] grapenthin% echo "Hello
Unmatched ".

[glacier:~] grapenthin% echo "Hello Wrld"
Hello Wrld

[glacier:~] grapenthin% echo "Hello World"
Hello World

Memory interlude

“Depth”,
http://xkcd.com/485 (September 16, 2009)

Memory interlude

“Depth”,
http://xkcd.com/485 (September 16, 2009)

Variables (2) – name

USE VALID NAME: follow programming language rules – Python
variable names must begin with a letter, followed by any
combination of letters, digits, and underscores. Uppercase
different from lowercase. Don't use reserved keywords!

USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ ... Don't use ‘a’ –
avoid ambiguity (Unless following a paper, textbook)

USE CONSITENT FORMATTING, i.e.: ‘my_cool_var’ vs.
‘myCoolVar’ –supports reading

Many style guides exist – punchline: use meaningful names, be
consistent (that’s hard enough)!

Variables (3) – type

What is a type? – Think of sets of numbers in math: N, R, Z, . . . The
type refers to how values are being represented in a computer’s
memory, i.e. the meaning of each bit, and how many bits are
necessary

Two kinds of Types
primitive, built-in types – for Python e.g.: 'boolean', 'int',
'float', 'complex' (important for print function)

non-primitive (built-in or self made) – sequences, iterators,
classes, ... https://docs.python.org/2.7/library/stdtypes.html

Types in Programming Languages
some languages, e.g. Python, Shells, Matlab are weakly typed:
implicit type conversions (OR one type can be treated as another)
this is nice at first, occasionally this leads to nasty/hard to fix
problems (e.g. string interpreted as number, etc.)

Variables (4) – value

Value
a value of the type of the variable: 23, 3.1415926..., false

i.e., the thing we stuff in the box
can/should change during the runtime of the program, otherwise
use a constant (if possible)

Declaring a variable and Assigning a value:
In General: (type) name = value; or (type) name =
expression;

Python: myNewVar=10; TC-Shell (differs) set myNewVar = 10;
Access to the values (de-referencing):
Python: use myNewVar; TC-Shell (differs) use ‘$’: $myNewVar

What’s that?
myNewVar = myNewVar + 1;

Advanced Variables: Vectors and Matrices (1)

Array variables
are lists, vectors, matrices of data (1 to n dimensional – book
keeping can become a hassle)
therefore instead of one value they hold a list of values
linked to a chunk of memory (a sequence of boxes)
access by index number
Difference between Python List and Numpy array!
Shells allow only vectors.

Memory interlude (2)

“Depth”,
http://xkcd.com/485 (September 16, 2009)

Memory interlude (2)

“Depth”,
http://xkcd.com/485 (September 16, 2009)

Memory interlude (2)

“Depth”,
http://xkcd.com/485 (September 16, 2009)

Memory interlude (2)

“Depth”,
http://xkcd.com/485 (September 16, 2009)

Advanced Variables: Vectors and Matrices (2)

Example: Numeric Vector
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
vector: 12 23.3 23.3 nan nan 1 42 42.1 23 5 nan nan 0 0 0

Example: String
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sting: h e l l o w o r l d ! ! ! !

Advanced Variables: Vectors and Matrices (2)

Example: Numeric List
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
vector: 12 23.3 23.3 nan nan 1 42 42.1 23 5 nan nan 0 0 0

Example: String
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sting: h e l l o w o r l d ! ! ! !

>>> x="hello world!!!!"
>>> x(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object is not callable
>>> x[1]
'e'

Logic 101

Use logic to connect multiple conditions and test for certain cases (0 is
false, 1 is true):

‘NOT’
(‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

‘XOR’:

a b a xor b
0 0 0
0 1 1
1 0 1
1 1 0

Examples

‘Friday Beer’ if not younger than 21 and it is Friday.
‘Discard data’ if outlier or affected by unmodeled processes.

Logic 101

Use logic to connect multiple conditions and test for certain cases (0 is
false, 1 is true):

‘NOT’
(‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

‘XOR’:

a b a xor b
0 0 0
0 1 1
1 0 1
1 1 0

Examples

‘Friday Beer’ if not younger than 21 and it is Friday.
‘Discard data’ if outlier or affected by unmodeled processes.

Logic 101

Use logic to connect multiple conditions and test for certain cases (0 is
false, 1 is true):

‘NOT’
(‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

‘XOR’:

a b a xor b
0 0 0
0 1 1
1 0 1
1 1 0

Examples

‘Friday Beer’ if not younger than 21 and it is Friday.
‘Discard data’ if outlier or affected by unmodeled processes.

Logic 101

Use logic to connect multiple conditions and test for certain cases (0 is
false, 1 is true):

‘NOT’
(‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

‘XOR’:

a b a xor b
0 0 0
0 1 1
1 0 1
1 1 0

Examples

‘Friday Beer’ if not younger than 21 and it is Friday.
‘Discard data’ if outlier or affected by unmodeled processes.

Logic 101

Use logic to connect multiple conditions and test for certain cases (0 is
false, 1 is true):

‘NOT’
(‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

‘XOR’:

a b a xor b
0 0 0
0 1 1
1 0 1
1 1 0

Examples

‘Friday Beer’ if not younger than 21 and it is Friday.
‘Discard data’ if outlier or affected by unmodeled processes.

Logic 101

Use logic to connect multiple conditions and test for certain cases (0 is
false, 1 is true):

‘NOT’
(‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

‘XOR’:

a b a xor b
0 0 0
0 1 1
1 0 1
1 1 0

Examples
‘Friday Beer’ if not younger than 21 and it is Friday.

‘Discard data’ if outlier or affected by unmodeled processes.

Logic 101

Use logic to connect multiple conditions and test for certain cases (0 is
false, 1 is true):

‘NOT’
(‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

‘XOR’:

a b a xor b
0 0 0
0 1 1
1 0 1
1 1 0

Examples
‘Friday Beer’ if not younger than 21 and it is Friday.
‘Discard data’ if outlier or affected by unmodeled processes.

	Variables and Datatypes
	Blank Page

