Geophysics 501

Computational Methods for the Geosciences

Flow Control and Lists

Zach Zens

Shell versions

* Thompson shell —sh

* Bourne shell

* Bourne again shell - BASH
 TCSH

e Korn Shell - KSH

* ZShell - ZSH

Shell versions

* Thompson shell —sh

* Bourne shell

* Bourne again shell - BASH
 TCSH

* Korn Shell - KSH

e ZShell - ZSH

General programming advice

* Your code should be clarified with comments (especially confusing
parts)
e Python and Shell use ‘#

e Everything after comments will be ignored
e print 2 + 2 # This prints 4
e print 2 #+ 2 This prints 2

e Use indentation and white space (Python forces indentation!)
* Use meaningful names for variables
* Decide on one formatting and naming scheme and stick with it

Indentation

* Indentation and white space make your program readable—no one
wants to read a giant wall of text

* When using if...else statements or loops in Python, your program will
not run if you do not use proper indentation

* Other languages enforce other rules to mark bodies of statements/
loops

Flow control

n=1.x

Qes(n)

false @ true

doSomething()

Flow control

doXtimes(n)

If...else statement

doSomething()

Flow control

doXtimes(n) doSomething()

Condition loop

If...else statement

Flow control

L e e e e e e e e e e e e e o e e e e
l |
| n=1.x [
l |
[I
| |
[I
| doXtimes(n) doSomething() | |
[I
l |
] A [4
Count loop Condition loop

If...else statement

Why do you need flow control?

* Programs without flow control run the same sequence of commands
every time the program is run

* With flow control, different statements are run depending on
conditions which you define

* Conditions change depending on user input, data, calculations,
random variables, etc

Conditionals

* Conditionals are used to see if some condition is true (1) or false (0)

e Conditionals use two types of operators:
* Relational
* Logical

Relational operators

Python

e ==or ‘is’

e I=or ‘is not’
¢ >

¢ <

o >=

o <=

Logical operators

Python Bash
e &, and *-a
* |, or *-0
.« A o |

*~, not

Python structure

if <condition>:
<statement>
elif <condition>:
<statement>
else:

<statement>

Python structure

if <condition>:
<statement>
elif <condition>:
<statement>
else:

<statement>

Python structure

if <condition>:
<statement>
elif <condition>:
<statement>
else:

<statement>

Python example

if grade > 90:
print “A”
elif grade > 80:
print “B”
elif grade > 70:
print “C”
elif grade > 60:
print “D”
else:
print “F”

Bash structure

if [<condition>]
then

<statement>
elif [<condition>]
then

<statement>
else

<statement>

Bash structure

if [<condition> |
then

<statement>
elif [<condition>]
then

<statement>
else

<statement>

Bash structure

if [<condition>]
then

<statement>
elif [<condition>]
then

<statement>
else

<statement>

Bash structure

if [<condition>]
then

<statement>
elif [<condition>]
then

<statement>
else

<statement>

Bash example

if [Sgrade -gt 90]; then

echo “A”

elif [Sgrade -gt 80]; then
echo “B”

elif [Sgrade -gt 70]; then
echo “C”

elif [Sgrade -gt 60]; then
echo “D”

else
echo “F”

Nested if...else example

Python Bash
if x>50 and x < 100: if [5x -gt 50 -a 5Sx -1t 100]
if y > 30 and y < 40: if[5y -gt30-a5y<40]

echo “Within range”
elif [Sy -gt 20 -a Sy -It 50]
echo “Almost in range”

print “Within range”
elify >20 and y < 50:
print “Almost in range” i

Loops

L e e e e e e e e e e e e e o e e e e
l |
| n=1.x |
l |
[I
| |
[I
| doXtimes(n) doSomething() | |
[I
l |
] l - ! - T = == ====-=====-"===== 4
Count loop Condition loop

Conditionals vs Loops

* Conditional statements * Loops execute certain statements

execute statements if over and over until a condition is
certain conditions are met met.

Types of loops

Python
* While loop
* For loop

Bash

* While loop
e Until loop
* For loop
 Select loop

While/Until loop structure

Python Bash Bash
while <condition>: while [<condition>] until [<condition>]
<statement> do do
<statement> <statement>

done done

While loop example

Python s
n=6

el while [Sn-gt 0]
while n > 0: do

print n echo $n

ifn%3==0: if (SN % 3==0));then

print “n is divisible by 3" echo “Sn is divisible by 3”
n-=1 let n=5n-1

done

Output

6
6 is divisible by 3
5
4
3
3 is divisible by 3
2
1

Infinite loops

while True:
print “Hello”

* If the condition is set to something that will always be true, the loop
will repeat infinitely

* To get out, you must press Ctrl+C

Breaking a loop example (Python)

num = 10 Output:
while True: _

3 IS even
num =num-—1 6 is even
if num == 0: 4 is even

break 2 is even

if num % 2 ==0:
print str(hum) + " is even"

For Loops

doXtimes(n)

Count loop

false

true

doSomething()

Sequences

* A sequence is an ordered collection of objects, or elements
e Sequences in Python include strings, lists and tuples

* Lists are very useful sequences which are used for organizing
information

[1,2,3,4,5, 6]
[lal’ lbl’ ICI’ ldl]

For loops

Python Bash
for <var> in <sequence>: for <var> in <sequence>
<statement> do
<statement>

done

For loop example

Python Bash
for num in range(0,10): fornumin0123456789
print num #tsame as: for numin 'seq 1 10
do

print Snum
done

Output

O A1 AN M < 1D O 0 O

Nested loops example (Python)

Output:
num =3

while num > 0O:
print num
for letter in [‘a’, ‘b’, ‘C]:
print letter

num -=1

O T Q9 L, O T 9 NO T 9 W

Lists

* A list can be thought of as a value which contains multiple elements or values.
* Elements can be integers, floats or strings or a combination of all of them.

* One or more elements can be referenced using indexing

Example:

Newlist = [45, 67, 34, 80]

Indexing

* Each element in a list is assigned a value, starting with O
* Elements may be accessed by calling its index:
* Negative indices may also be used

Newlist[O]

S> 45 [45, 67, 34, 80]
Newlist[1] 0 1 2 3
S> 67

Indexing

* Each element in a list is assigned a value, starting with O
* Elements may be accessed by calling its index:
* Negative indices may also be used (Python specific)

Newlist[-1] A
S> 80 [45, 67, 34, 80]
Newlist[-3] 0 1 2 3
S> 67

Slicing

* You can call a sublist by using slicing (Python specific)

grades = [88, 72, 93; 94]

>>> grades|[1l:3]
[72, 93]

Changing indices

 Strings are immutable
* Lists are mutable

S> txt = “car” S> newlist = [50, 45, 30]
S> txt[0] = “t” S> newlist[1] = 40
TypeError: 'str' object does not support item S> newlist

assignment [50, 40, 30]

Nested lists example (Python)

nestedlist =[5, 6, [7, 8, 9, 10], 11, [12, 13]]
nestedlist[O]
nestedlist
nestedlist

L
2]

Output:

5
6

[7, 8,9, 10]

Accessing subelements

nestedlist =[5, 6, [7, 8,9, 10], 11, [12, 13]]
nestedlist[2][0]

nestedlist[2][1]

nestedlist[2][0:2]

Output:

7
8
[7, 8]

Index out of range (Python)

>>>new_list=[1,2,3] #make new list

>>> new_list[3] ttaccess last item?
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

Oops — read error messages!

Fizzbuzz test

e Simple flow control and iteration program commonly given in
Interviews

* Allegedly, most graduates fail this test

Rules

* Print a
* For mu
* For mu

* For mu

ist of numbers from 1 to 100

es of 3, print “Fizz” instead of the number
es of 5, print “Buzz” instead of the number
es of 3 & 5, print “FizzBuzz” instead of the number

More examples

Python Bash
num =0 num=0
while true: while [True]
num = int(input “Enter a number from 1-10:") do
if num > 0 and num < 11: echo “Enter a number from 1-10:”
read num
break
if [Snum -gt 0 -a Snum —It 11]; then
print “%num is not a number from 1-10.”
break
fi

echo “Snum is not a number from 1-10.”

done

Output

Enter a number from 1 - 10:
S> 16

16 is not a number from 1 -10
S> -9

-9 is not a number from 1 -10
S>5

Another example (Python)

samplel = ['zz-1', 0.31, 14.5, 53.7] #name, Ti, Al, Zr (ppm) Output:
sample2 =['zz-2', 0.38, 14.6, 60.5] (221, 0.31, 14.5,
newlist = [[], []] 0.005370000000000001], ['zz-2',

0.38, 14.6, 0.00605
for x in range(0, len(samplel)): Il

if type(samplel[x]) is not str and float(samplel[x]) > 20:
samplel[x] /= 10000
sample2[x] /= 10000
newlist[0].append(samplel[x])
newlist[1].append(sample2[x])

print newlist

