File Input/Output in Python

October 9, 2017

MY ACCOMPLISHMENT IT WASN'T THAT 1/ 1T TRIED TO DOWN-
THIS MONTH WAS THAT TOOK EASY. I DION'T LOAD THE VIEWER
OPENING A FILE THAT AN ENTIRE HAVE THE RIGHT FROM THE INTERNET
SOMEONE E-MAILED. \ | SOFTWARE TO BUT THE WEB SITE

: 2 OPEN THE FILE. DIDN'T SUPPORT MY

AND T COULON'T THAT REQUIRED ME { MY HARD DISK GOT

UPGRADE MY BROWSER TO UPGRADE ALL OF MAXED OUT, SO T YOU GOT
UNTIL T UPGRADED MY MY APPLICATIONS 23?,\‘,7&;’:6:@8‘ MY TO VIEW
OPERATING SYSTEM! SOFTWARE, TOO. O e o THE FILE?

THE FILES.

© Scott Adams, Inc./Dist. by UFS, Inc.

Moving beyond simple analysis — Use real data

* Most of you will have datasets that you want to do some
analysis with (from simple statistics on few hundred sample
points to millions of waveform files)

* This data is likely already contained in an existing file

* Can simply import it using range of python tools, able to use
previously discussed python tools for analysis

Moving beyond simple analysis — Use real data

* Once analysis is done, you will want to capture result of analysis
e Figures (use matplotlib)
e Qutput data files

* Today we will cover a range of techniques for importing data files
into python and exporting information into new files

e Lab today gives some examples/practice as well as have you create
more “useful” deliverables based on input/output of files

File I/O Tools Covered:

* Built-in python
e open(), read(), write(), close()

* NumPy

 loadtxt(), genfromtxt(), savetxt()

* Pandas
* read _csv(), read_excel(), to_csv()

Side Note: Commonly used file formats
(for geoscience-type folks)

* Ascii or text files are those that are readable by humans
e Create these in your text editor of choice
* Sometimes called “flat file”
* Has little/no formatting (no bold, italics, etc)

e Binary files — non-text file (not human readable), computer
readable
* Contain sequence of bytes grouped in eights
 Compiled code = executable, example of binary file
* Excel file format —another example of binary file
* Opening in text editor show unintelligible characters
* Lots of other file formats covering images, audio, software specific, etc

* Work with python tools that allow for use of both ascii and binary
file formats

Delimiters

 Text files will have some way to indicate new columns
of data, rows separated by newlines

* Range of these, with common examples:
* Single white space
* Tab
* Comma
* Colon

* Need to be aware of these as you read and write your
own files

User Input and Simple Output on Screen

* In some cases, it’s useful to request some input from user (filename, range of
parameters, etc)

* raw_input() and input() functions will do this, have differences in behavior in
Python 2.7 (version we are using for class)

* raw_input() assumes strings (will convert numbers to strings)
* input() will evaluate whatever is in argument (can be numbers, functions, etc)

>>> txt = raw_input("Enter text here: ") #will print out text contained in “ “ onto screen,
will wait for user response, put response into txt

e print() — simple printing. If no “file=" parameter set, will simply print to screen

Built-in Python Functions: open(), read(), write(), close()

* Simple tools — no need to call special packages

* Example file: (has unseen line breaks)

This is a test file for Lab 7.
Basic file input and output functions will be covered.
You will also get practice pulling in all previous material.

* Results can be ugly (print out the line breaks as \n)

>>> f1 = open('W7_P2_file.txt','r')

>>> fl.read()

'This is a test file for Lab 7.\nBasic file input and output functions will be covered.\nYou will also get practice pulling i
n all previous material.\n'

>>>

Built-in Python Functions: open(), read(), write(), close()

* Important steps — need to open file first before reading or writing

>>> f1 = open('W7_P2_file.txt','r')

>>> fl.read()

'This is a test file for Lab 7.\nBasic file input and output functions will be covered.\nYou will also get practice pulling i
n all previous material.\n'

>>>

‘r': reading only

‘r+’: reading and writing

‘w’: writing only

‘a’: append to end of existing file
‘b’: use for binary files

>>> 2 = open('file_write.txt','w') #opens a file for writing only
>>> f2.write('Practice at writing to a new file') #puts text into the f2 file (here file_write.txt)

* Need to close file when done writing (makes sure that what you
write in file actually gets written, done at close)

>>> f2.close()

Once you have a file open for reading....

* read()

* Will read entire file’s contents at once
* Ok for some purposes, but if you want to do something to each line, need something else

* readline()
e Reads a single line in the file
* Can do it multiple times for multiple lines, but

» Better option is looping over the file using for loop

>>> f1 = open('W7_P2_file.txt','r')
>>> for line in f1:
print line,

This is a test file for Lab 7.
Basic file input and output functions will be covered.
You will also get practice pulling in all previous material.

NumPy: loadtxt(), genfromtxt(), savetxt()

* Remember NumPy library useful for dealing with
arrays

* Can use NumPy tools to read and write files, easily
put data into NumPy arrays

* Need to remember to import the NumPy library
before using

* >>import numpy as np

Loading files with NumPy

* |oadtxt(): simplest, can define filename (here also skipping row 1), puts all data into
a NumPy array

>>> np.loadtxt('data_table.txt', skiprows=1)
array([[0.2536, 0.1008, 0.3857],

[0.4839, 0.4536, 0.3561],

[0.1292, 0.6875, 0.5929],

[0.1781, 0.3049, 0.8928],

[0.6253, 0.3486, 0.8791]])

e Other useful parameters

* usecols= to specify which columns to read
* unpack=True to split into multiple arrays
* delimiter="* to define the delimiter (white space is default)

* Some issues

* Default data type is float, need to specify if not for each column
* Files with missing data cause errors

Loading files with NumPy

e genfromtxt()
* More flexible way to import data into NumPy array

* Very useful parameter: dtype --if use “=None”, will be assigned by
what’s in each column

* Can define how to handle missing data (define “missing_values”
and “filling_values”)

* Examples below pulls all data from space-delimited file file called
‘station.txt’,

* skipping the header line

>>> example_array = np.genfromtxt('station.txt', dtype=None, delimiter="", skip_header=1)

e use column names in first line to define names of columns in array
(access using these names)

>>>example_array = np.genfromtxt('station.txt', dtype=None, delimiter="", names=True)

NumPy: loadtxt() vs genfromtxt()

* Which one to use?

» genfromtxt() is better option unless you have very
simple files

e Supports many of the same parameters as loadtxt(), but
handles missing data and defines data type
automatically, which is useful if you have some columns
with strings

NumPy Saving Files

* savetxt(): saves an array to a text file
* Need to define an output filename and the array to save

e Can also define the format of the array objects,
delimiters, header, footer, comments

>>> np.savetxt('file.out', example_array, fmt='%s %f %f %i %i %i')

ANMO 34.95006688 -186.46000808 1828 1 2
Saves the example_array to a file called file.out: BAR 34.150000 -106.628000 2121 1 3
BMT 34.275680 -187.260680 1987 1 4
CAR 33.9525808 -186.7348808 1658 1 5
CBET 32.420000 -183.9900600 10842 1 6
CL2B 32.2300600 -163.886600 2121 1 7
CL7 32.4400080 -163.8106660 1632 1 8
CPRX 33.8308060 -183.86706060 1356 1 9
DAG 32.591388 -164.6916606 1277 1 186

Pandas: read csv(), read excel(), to csv()

* Covered pandas Series and DataFrames last week — very useful
data structures that can be manipulated with various functions in
numpy and pandas

* Can also read data from files directly into these structures, using a
variety of text and binary formatted files (including MS Excel)

e Can write these structures back out into text files (also excel files,
but why?)

* Functions contained within the pandas library, so need to import
that before using

>>> import pandas as pd

Pandas: read csv()

* Use follows previous examples

>>> station1 _df = pd.read_csv('station.txt', sep="", header=0)
Using the header=0 will pull the names of columns in first line of file to be used as names in DataFrame

* Gives a data structure (stationl df) that contains
data from the 'station.txt’ file

>>> stationl_df
Name Lon Elevation Type Number

8 1 2
1 BAR 34,1509 -106.628 2121 1 3
2 BMT 34,2758 -107.260 1987 1 <
3 CAR 33,8525 -106.734 1658 1 5
4 CBET 32,4209 -103.990 1842 1 6
5 CL2B_32.2398 -103.880 2121 1 7
6 CL7__32.4498 -103.810 1832 1 8
7 CPBX 33.P3AR -103.867 1356 1 9
8 AG 32,5913 -104.691 1277 1 18
9 GDLZ2_ 32,2083 -104.364 1213 1 11

Pandas: read csv()

* A lot of options available to customize the reading
(filename is required):

pandas.read_csv

pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None,
usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None,
true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None,
keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False,
infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False,
chunksize=None, compression='infer’, thousands=None, decimal=b".", lineterminator=None, quotechar="", quoting=0,
escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True,
warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True, delim_whitespace=False, as_recarray=False,
compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, memory_map=False,
float_precision=None) [source]

Read CSV (comma-separated) file into DataFrame

Pandas: read excel()

* Another great tool if you have data in MS Excel files

and don’t want to open in Excel to save as a text
file.

* Very similar to read _csv() except need to define the
sheetname to read

>>> station2_df = pd.read_excel('station.xlsx', sheetname="'Sheet1’)

Saving DataFrame to File: to csv

 Similar structure to previous examples — will save a
DataFrame to textfile

>>> station1_df.to_csv('station_out.txt', sep="")

Summary:

* There is a wide range of file input/output tools
available in python to handle user input, text and
binary files (like MS Excel)

* Which one you select depends a lot on
* Input file format, data type, and complexity
* What analysis tools you need for the data

Think about a data file that you have for your research:

e Write down the basic structure of the file (how many
columns, rows, what do they consist of (strings, floats,
int for example)

 What kind of analysis do you need to (or want to, or
could) do with data in this file?

* What input/output tool would work best for that
purpose?

. Bringlthis (+ file) to lab today — have an opportunity to
try it!

Next up:

* Lab today: practice with file input and output, as
well as bring together the variety of tools covered
so far

* Next week: Leave python to cover some basic UNIX
tools

