COMPUTER HOLY WARS 2| THAT SCRUFFY £|[YOU'RE ONE OF THOSE
é 6EARD - THOSE E CONDESCENDING UNIX
HOLD IT RIGHT . p
THEREX BUDDY g SU\SPENDERS E COMPUTER USERSI
2| THAT SMUG e HERE'S A NICKEL
5| EXPRESSION. . : KID. GET YOUR-
: \ : SELF A BETTER
i ‘.g COMPUTER .
G > N
BEYIN Vo
P 4 _ll = -
L ¥ L '

Unix 1

Basics, setups, some useful commands, and scripting

"'Unix is user friendly --
It's just picky about who it's friends
are...”’

Background: UNIX

* |t's an operating system
e OS - tells a computer how to operate, like Windows, iOS, etc.

Macs have unix as their foundation, Linux machines run linux,
which is a close approximation to unix)

e Developed in late 1960s at Bell Labs (linked to AT&T)

* Basic philosophy stresses use of fairly simple programs
or tools to do one thing, then take output of that tool
into another tool

* Means that the tools are pretty simple (so less buggy) and
can be joined together to do more complicated things
* So why doesn’t everyone use UNIX?

* Much steeper learning curve.....
* Command-line interface and fairly cryptic program names

You’ve already worked with UNIX

* Initial setup lab had you exploring files, directories,
and moving around in a structure

* You've also worked with unix in all of your
command-line operations outside of the python
windows

e Today will go through some background on UNIX,
setups and environments, a few useful commands,
and scripting

UNIX setup

* When you start up your computer, it will read
specific files that define several important setup
variables

* Most you don’t need to adjust, but some key ones
you should know about
* Defining the shell
* Environment variables
e aliases

Shells

* User interface for the UNIX operating system
* Interprets what you type

* Controls the syntax of what you type at the command
line

 Variety of shells available
* sh (Bourne shell)
* bash (Bourne Again shell) - often default on linux and Mac

e csh (Cshell), tcsh (tenex C shell - very similar to csh)
* Both similar to the C programming language in syntax

* bash and tcsh are the ones most commonly used in 345
setups

What shell do you use?

* Check the top of your terminal window (usually tells
YOU) o0 @ Terminal — -tcsh — 80x24

[Macintosh-5:~] sbilek%

* |In a terminal window:
>> env SSHELL #this will return your login shell to the screen

* You can change shells in any window
* Just type the shell name at the prompt

* Which one should | use?
e User preference - pick one and learn its syntax

UNIX Environment

* The environment setup is important — defines
specific environment variables for the OS so that
each time you log in, you get the same behavior

* How to see what your environment variables are?

>> env

[Macintosh-5:NMTCourses/GEOP501/W6_DATA_STRUCT] sbilek% env
TMPDIR=/var/folders/45/231km3w93w78qt5ryt4wc3reeeeegn/T/

TERM_PROGRAM_VERSION=388.1.1
Apple_PubSub_Socket_Render=/private/tmp/com.apple.launchd.J@a76irDKJ/Render
LANG=en_US.UTF-8

TERM_PROGRAM=Apple_Terminal

XPC_SERVICE_NAME=0

XPC_FLAGS=0x0

DISPLAY=/private/tmp/com.apple.launchd.W9zixbHfqé6/org.macosforge.xquartz:0
SSH_AUTH_SOCK=/private/tmp/com.apple.launchd.6ybeY@xnPK/Listeners

TERM=xterm-256color

TERM_SESSION_ID=143C1932-AA06—-48CE-A435-814ACDA6C87C

__CF_USER_TEXT_ENCODING=0x1F5:0x0:0x0

SHELL=/bin/bash

HOME=/Users/sbilek

LOGNAME=sbilek

USER=sbilek
PATH=/Users/sbilek/anaconda/bin:/usr/local/GMT4.4.0/bin:/Developer/Tools/:/Users/sbilek/bin
:/usr/bin:/usr/local/bin:/usr/local/sac/bin:/usr/X11R6/bin:/Applications/Absoft10/bin:/sw/b
in:/opt/passcal/bin:/Users/sbilek/PROGRAMS/sod/bin:/Users/sbilek/PROGRAMS/PROGRAMS.330/bin:
/Users/sbilek/PROGRAMS/Taup/TauP-2.1.08/bin:.:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/
opt/X11/bin:/usr/local/bin:/Users/sbilek/anaconda/bin:/opt/passcal/bin:/opt/passcal/other/b
in

HOSTTYPE=unknown

VENDOR=apple

OSTYPE=darwin

MACHTYPE=x86_64

SHLVL=1

PWD=/Users/sbilek/TEACHING/NMTCourses/GEOP501/W6_DATA_STRUCT

GROUP=staff

HOST=Macintosh-5.1local

TAUP_HOME=/Users/sbilek/PROGRAMS/Taup/TauP-2.1.90

ABSOFT=/Applications/Absoft10

PASSCAL=/opt/passcal

PASSOFT=/opt/passcal

MANPATH=/usr/share/man:/usr/local/GMT4.4.0/man:/opt/passcal/man
NETCDFHOME=/usr/local/netcdf-3.6.3

SACAUX=/usr/local/sac/aux

GREENDIR=/Users/sbilek/PROGRAMS/PROGRAMS.330/GREEN

PERL5LIB=/Users/sbilek/libperl

CC=/Applications/Xcode.app/Contents/Developer/usr/bin/gcc

PATH

* PATH: tells the shell where to find applications or
exe C u ta b | e ﬁ | eS PATH=/Users/sbilek/anaconda/bin:/usr/local/GMT4.4.0/bin:/Developer/Tools/:/Users/sbilek/bin

:/usr/bin:/usr/local/bin:/usr/local/sac/bin:/usr/X11R6/bin:/Applications/Absoftl1@/bin:/sw/b
in:/opt/passcal/bin:/Users/sbilek/PROGRAMS/sod/bin:/Users/sbilek/PROGRAMS/PROGRAMS.330/bin:
/Users/sbilek/PROGRAMS/Taup/TauP-2.1.08/bin:.:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/
opt/X11/bin:/usr/local/bin:/Users/sbilek/anaconda/bin:/opt/passcal/bin:/opt/passcal/other/b
in

* : separates each full path name

* When you call a command, the shell will search
through your list of paths, in order, until it finds the
first occurrence to use

* That first one it finds will be the one it uses

* To force use of an executable at a different location, you
need to define the full path on the command line

>> /USEFS/Sb”Ek/SaC # will use the program sac in my home
directory rather than the one defined in my path at /usr/local/sac/bin/sac

How to modify environment (and other) variables

* For single use:
 tcsh >> setenv PATH {SPATH}:/newloc
e bash >> PATH=SPATH:/newloc

* For single use:

e tcsh: >> set history = 1000 #saves last 1000
commands in the history list

* bash: >> history=1000

But this gets old, having to type this stuff in to every terminal window.... Luckily there is a
file for that!

Modiftying the default environment

* You can make changes to your environment so that
each time you log in/start a new window, it
contains your specific values

* These are contained in a “dot” file

* these are typically invisible to the user when doing Is
commands, live in your home directory

 We’'ll focus on the shell configuration file (.tcshrc
or .profile)

Example for .tcshrc

For .profile:
PATH=/usr/local/bin:/
usr/bin:/usr/local/

GMT/bin

export PATH

v

B! /bin/tcsh

setenv TAUP_HOME /Users/sbilek/PROGRAMS/Taup/TauP-2.1.0

set path = (~/anaconda/bin /usr/local/GMT4.4.0/bin /Developer/Tools/ ~/bin /usr/bin /usr/1
ocal/bin /usr/local/sac/bin /usr/X11Ré/bin /Applications/Absoftl1@/bin /sw/bin /opt/passcal/
bin ~/PROGRAMS/sod/bin /Users/sbilek/PROGRAMS/PROGRAMS.330/bin ${TAUP_HOME}/bin . $path /us
r/local/bin ~/anaconda/bin)

#add to path for gmt5 /Applications/GMT-5.4.2.app/Contents/Resources/bin

set noclobber

setenv ABSOFT /Applications/Absoftl@

#setenv PASSCAL /opt/passcal/bin

setenv PASSCAL /opt/passcal

setenv PASSOFT ${PASSCAL}

source ${PASSCAL}/setup/setup.csh

setenv MANPATH /usr/share/man:/usr/local/GMT4.4.0/man:$MANPATH

setenv LD_LIBRARY_PATH /Applications/Absoft10/1ib/

setenv NETCDFHOME /usr/local/netcdf-3.6.3

#setenv SACAUX /usr/local/sac1@1.5c/aux

setenv SACAUX /usr/local/sac/aux

#setenv SAC_PPK_LARGE_CROSSHAIRS 1

#setenv PYTHONPATH /Users/sbilek/PROGRAMS/PSU_Finite_Fault_Codes/CommandLineTools/PySac_2.0
.2

setenv GREENDIR /Users/sbilek/PROGRAMS/PROGRAMS.330/GREEN

setenv PERL5LIB /Users/sbilek/libperl

#setenv VERSIONER_PERL_VERSION 5.12

setenv CC /Applications/Xcode.app/Contents/Developer/usr/bin/gcc

alias ¢ 'clear'

alias cp 'cp -i'

alias mv 'mv -i'

alias rm 'rm -f'

alias 1 'ls -F'

alias 11 'ls -1

alias .. 'cd ..'

alias . 'echo $cwd'

alias fle "perl -pi -e 's/\r/\n/g' "

#alias sac '/usr/local/sacl@1.5c/bin/sac ~/macros/init.m’'
alias sac '/usr/local/sac/bin/sac ~/macros/init.m'

"~/.tcshrc" 37L, 1459C

Example for .tcshrc

Aliases are awesome!

Can be usedina
terminal window for
short term use or set
up here for continual
use

v

B! /bin/tcsh

setenv TAUP_HOME /Users/sbilek/PROGRAMS/Taup/TauP-2.1.0

set path = (~/anaconda/bin /usr/local/GMT4.4.0/bin /Developer/Tools/ ~/bin /usr/bin /usr/1
ocal/bin /usr/local/sac/bin /usr/X11Ré/bin /Applications/Absoftl1@/bin /sw/bin /opt/passcal/
bin ~/PROGRAMS/sod/bin /Users/sbilek/PROGRAMS/PROGRAMS.330/bin ${TAUP_HOME}/bin . $path /us
r/local/bin ~/anaconda/bin)

#add to path for gmt5 /Applications/GMT-5.4.2.app/Contents/Resources/bin

set noclobber

setenv ABSOFT /Applications/Absoftl@

#setenv PASSCAL /opt/passcal/bin

setenv PASSCAL /opt/passcal

setenv PASSOFT ${PASSCAL}

source ${PASSCAL}/setup/setup.csh

setenv MANPATH /usr/share/man:/usr/local/GMT4.4.0/man:$MANPATH

setenv LD_LIBRARY_PATH /Applications/Absoft10/1ib/

setenv NETCDFHOME /usr/local/netcdf-3.6.3

#setenv SACAUX /usr/local/sac1@1.5c/aux

setenv SACAUX /usr/local/sac/aux

#setenv SAC_PPK_LARGE_CROSSHAIRS 1

#setenv PYTHONPATH /Users/sbilek/PROGRAMS/PSU_Finite_Fault_Codes/CommandLineTools/PySac_2.0
.2

setenv GREENDIR /Users/sbilek/PROGRAMS/PROGRAMS.330/GREEN

setenv PERL5LIB /Users/sbilek/libperl

#setenv VERSIONER_PERL_VERSION 5.12

setenv CC /Applications/Xcode.app/Contents/Developer/usr/bin/gcc

alias ¢ 'clear'

alias cp 'cp -i'

alias mv 'mv -i'

alias rm 'rm -f'

alias 1 'ls -F'

alias 11 'ls -1

alias .. 'cd ..'

alias . 'echo $cwd'

alias fle "perl -pi -e 's/\r/\n/g' "

#alias sac '/usr/local/sacl@1.5c/bin/sac ~/macros/init.m’'
alias sac '/usr/local/sac/bin/sac ~/macros/init.m'

"~/.tcshrc" 37L, 1459C

Force execution of config files:
source

* If you modify your configuration files and want
those changes to be implemented in your current
terminal window, need to execute the file

e >> source ~/.tcshrc

* Note that if you just open new terminal windows,
these changes will automatically take effect

Directory Structure

/fs/raid/users/sbilek

Working down from home directory — subdirectories containing other directories and files.
Move around using ‘cd’ -- change directory, ‘pwd’ - check current directory

‘

‘.’ —indicates current directory ‘.." indicates the directory directly above, '~ indicates home directory

Other useful commands -
directories

* mkdir name : make a directory

 rmdir name : remove a directory if it is empty

* rm name : removes file **** pbe careful

* rm —-r name : removes directory **** be careful
e cp : copy files

* cp -r: copy directory and all files/etc inside it

* mv : move files or directories

Other useful commands

* |s : list everything in the current directory

* man cmd : bring up a manual page for the
command ‘cmd’

* more : opens a text file for viewing, use space to
scroll

* head —nX: displays the first X lines in a file
* tail -nX : displays the last X lines in a file
 wc : line, word, and character count in a file

e sort : sort function (handles both letters and
numbers)

Wildcards

* *and ? Can be used as wildcards, very useful for being able to match
filenames

* * match any number of characters
e ? Match 1 character

>>> cp station_list* ./INPUTS

(copies station_list1.dat, station_list10.dat, station_list2.dat, station_list3.dat, station_list.txt to
directory ./INPUTS)

>>> cp station_list1?.dat ./INPUTS
(copies only station_list10.dat to ./INPUTS)

* [] : placeholder that holds a range of characters or numbers

>>> cp station_list[1-3]* ./INPUTS
(copies station_list1.dat, station_list2.dat, station_list3.dat to ./INPUTS)

Command line redirection/piping

| (vertical line): pipe
e Uses the output from a command on the left side of
pipe as input into in the right side of the pipe

>>> |s ./Seismograms | head -n5
BAR.EHZ
CAR.EHZ
CBET.EHZ
DAG.EHZ
MLM.EHZ

Command line redirection/piping

e >:redirect screen output to a defined file
>>> [s ./Seismograms | head —n5 > station_list.txt

>>> more station_list.txt
BAR.EHZ
CAR.EHZ
CBET.EHZ
DAG.EHZ
MLM.EHZ

» Be careful with redirects in tcsh (will not overwrite an existing file, will give warning
instead, need to use >! to overwrite) and bash (will overwrite a file with no warning)

e >>:concatenate screen output to end of an existing file
>>>|s ./Seismograms | tail —-n1 >> station_list.txt

>>> more station_list.txt
BAR.EHZ
CAR.EHZ
CBET.EHZ
DAG.EHZ
MLM.EHZ
WTX.EHZ

Shell scripting

 What is it? Program using shell commands (like
you would use in on the command line in the shell)

e Similar to python scripts you’ve been writing so far

* Useful to capture series of commands that
accomplish a task and allow you to repeat your
work

* Also fairly portable

Simple shell
SCri pt #1/bin/csh

mkdir DATA_FILES

cp /Users/sbilek/RESEARCH/MEXICO_PROJECT/swarms/NEEDED_FILES_FOR_SPEC_RAT/get_cluster_wfdisc.csh .
Scri pt th at cp /Users/sbilek/RESEARCH/MEXICO_PROJECT/swarms/NEEDED_FILES_FOR_SPEC_RAT/station.txt .

cp /Users/sbilek/RESEARCH/MEXICO_PROJECT/swarms/NEEDED_FILES_FOR_SPEC_RAT/get_parameters.csh .

. . . cp /Users/sbilek/RESEARCH/MEXICO_PROJECT/swarms/NEEDED_FILES_FOR_SPEC_RAT/runenvdel_*pl .
* copies some files into

. rm tmp*
a directory and uses cp *dat ./DATA_FILES

loops to
* sort a list of values e (51 < 10
and gra bS Out the Iast @s?-r’-t;lk 2,2 moments.Si.dat | tail -1 > moments.${i}_used
line to write to a new end
file,
.] cp *used ./DATA_FILES
* run a perl script with
output going to a @i=1
. . . while (Si <= 10)
deﬁned ﬁlel mOVIng echo "working on cluster " Si
2 perl runenvdel_S{i}.pl > test_S${i}.out
ﬁ!es to r?ew mv test_Si.out ./ClusterSi
directories @i+l
en

Allows me to run a large set of calculations without me having to sit
and wait for each run to finish and move files around

Shell scripting

* Some of the python scripts we’ve already done can
be re-written in shell scripts

 Key differences in syntax between python and shell (and
between different shells)

* Go back to “Flow control” lecture for some specific
examples/comparisons

 Specific UNIX constructs exist
* For example, use of = " (back or accent quotes) -

command substitution

* Tells the shell to run what is inside the back quotes and put the
output of the command back into the quotes

Variables in shell scripts

» Used to store information (character, string, value)
* Can define it using = and return it using S

e csh bash

>>>set b ="This is a test” >>> b="This is a test”

>>>a="echo $b | we
>>> echo Sa

>>> echo Sa 1415

1415 (1line, 4 words, 15 characters)

Note the subtle differences: set in csh, no spaces around = in bash
Also note use of the command substitution in back quotes

Quotes

* ‘... i single quotes forces literal interpretation of
whatever is the the quotes

o “ " :double quotes group words/characters together,
but escape characters, variables are still recognized (so
can be an issue with S for example)

* csh bash

>>> set b = “Hello world $” >>> b="Hello world $”
>>> echo Sb >>> echo Sb

Illegal variable name Illegal variable name
>>> set b = ‘Hello world &’ >>> b=‘Hello world &’
>>> echo Sb >>> echo Sb

Hello world $ Hello world $

Basic calculations - Arithmetic

* Shell arithmetic is integer only,
e +:addition
e - :subtraction
e *:multiplication
e /:division
* % : remainder or modulus

* bash: S(()) used to calculate expressions
>>>echo $((10/3))
3

e csh:

Assignment Operators

* = :setvariable equal to value on the right

e +=:set variable to itself plus value on the right

e -=:set variable to itself minus value on the right

e *=:set variable to itself times value on the right

* /=:set variable to itself divided by value on the right

* %= set variable equal to remainder of itself divided by the
value on the right

Relational Operators

 All relational operators are left to right associative

< :testforless than

* <=:test for less than or equal to

e > : test for greater than

e >=:test for greater than or equal to
e ==:test for equal to

e I= :test for not equal

Logical Operators

* Logical operators return 1 for true and O for false

* && :logical AND; tests that both expressions are true
* |eft to right associative
%echo S(((3 <4) && (10<15)))
1
%echo S(((3<4) && (10>15)))
0

|| : logical OR; tests that one or both of the expressions are true
* left to right associative
%echo S(((3<4) || (10>15)))
1

* | :logical negation; tests that expression is true

Testing

 useful flags return true (0) if
* -d :expression is a directory
 -f :expressionis aregular file
e -e :expression is any type of file
* -w :expression is a writable file
e -X :expression is an executable (file or directory)
* -n :expression is a nonzero length string
e -z :expression is a zero length string

e Particularly useful to test for this (in if statements)
at start of codes to make sure files exist, produce
error message if not.

Flow control

 if/then/endif
e if/then/else/endif
e if/then/elseif/endif
* do/done (in bash, used in for, while loops)
* For loop: iterates over an array of objects
* While loop: continues to loop as long as condition is met
* Foreach (tcsh command): allows for iteration over files
>>>
foreach file (*.BHZ)
echo Sfile
cp Sfile Sfile_copy.BHZ
end

Reading command line arguments

* Shell scripts can take inputs from the command line

* Script: name.sh

[. O Terminal — vi name.sh — 80x24
|N!#bin/bash

echo "Hi there. My name is $HOST. Who are you?"

echo "Nice to meet you $1.j§

e >>> /name.sh Sue

Hi there. My name is Macintosh-5.local. Who are you?
Nice to meet you Sue.

Next time:

* Live shell scripting

e 2 weeks from now: more UNIX using other
powerful tools like grep, awk, sed

