
UNIX	II:grep,	awk,	sed
October	30,	2017

File	searching	and	manipulation

• In	many	cases,	you	might	have	a	file	in	which	you	
need	to	find	specific	entries	(want	to	find	each	case	
of	NaN in	your	datafile for	example)

• Or	you	want	to	reformat	a	long	datafile (change	
order	of	columns,	or	just	use	certain	columns)

• Can	be	done	with	writing	python	or	other	scripts,	
today	will	use	other	UNIX	tools

grep:	global	regular	expression	print
• Use	to	search	for	a	pattern	and	print	them
• Amazingly	useful!	(a	lot	like	Google)

grep

>>>		grep	Oklahoma	one_week_eq.txt
2017-10-28T09:32:45.970Z,35.3476,-98.0622,5,2.7,mb_lg,,133,0.329,0.3,us,us1000ay0b,2017-10-28T09:47:05.040Z,"11km	WNW	of	Minco,	
Oklahoma",earthquake,1.7,1.9,0.056,83,reviewed,us,us

2017-10-28T04:08:45.890Z,36.2119,-97.2878,5,2.5,mb_lg,,41,0.064,0.32,us,us1000axz3,2017-10-28T04:22:21.040Z,"8km	S	of	Perry,	
Oklahoma",earthquake,1.4,2,0.104,24,reviewed,us,us

2017-10-27T18:39:28.100Z,36.4921,-98.7233,6.404,2.7,ml,,50,,0.41,us,us1000axpz,2017-10-28T02:02:23.625Z,"33km	NW	of	Fairview,	
Oklahoma",earthquake,1.3,2.6,,,reviewed,tul,tul

2017-10-27T10:00:07.430Z,36.2851,-97.506,5,2.8,mb_lg,,25,0.216,0.19,us,us1000axgi,2017-10-27T19:39:37.296Z,"19km	W	of	Perry,	
Oklahoma",earthquake,0.7,1.8,0.071,52,reviewed,us,us

2017-10-25T15:17:48.200Z,36.2824,-97.504,7.408,3.1,ml,,25,,0.23,us,us1000awq6,2017-10-25T21:38:59.678Z,"19km	W	of	Perry,	
Oklahoma",earthquake,1.1,5,,,reviewed,tul,tul

2017-10-25T11:05:21.940Z,35.4134,-97.0133,5,2.5,mb_lg,,157,0.152,0.31,us,us1000awms,2017-10-27T21:37:47.660Z,"7km	ESE	of	McLoud,	
Oklahoma",earthquake,1.7,2,0.117,19,reviewed,us,us

2017-10-25T01:50:53.100Z,36.9748,-99.4244,8.115,2.9,ml,,197,,0.64,us,us1000awir,2017-10-26T00:52:01.343Z,"23km	NE	of	Buffalo,	
Oklahoma",earthquake,2,7.6,,,reviewed,tul,tul

2017-10-24T23:18:09.000Z,35.3787,-98.0931,7.72,2.7,ml,,91,,0.49,us,us1000awhe,2017-10-26T00:47:37.010Z,"13km	W	of	Union	City,	
Oklahoma",earthquake,2.4,5.7,,,reviewed,tul,tul

2017-10-23T15:57:10.890Z,36.6565,-97.8019,5,2.6,mb_lg,,39,0.2,0.15,us,us1000avxp,2017-10-23T18:30:47.642Z,"17km	SSW	of	Medford,	
Oklahoma",earthquake,1.2,1.8,0.132,15,reviewed,us,us

Basic	syntax:	>>>	grep	<pattern>	<inputfile>

grep	

• Lots	of	useful	options	available	(read	the	man	
page!)
• -w	:	look	for	a	whole	word
• -i :	ignore	case
• -v	:	omit	matching	lines
• -c:	provide	a	count	of	matching	lines

grep

What	is	a	regular
expression?

Regular	Expression

• Set	of	characters	that	specify	a	pattern

• Makes	changing	and	searching	for	text	easy	just	from	the	
command	line.

• Regular	expressions	are	accepted	input	for	grep,	sed,	awk,	
perl,	vim	and	other	unix commands.

• It’s	all	about	syntax….	(and	because	it’s	UNIX,	it’s	a	little	
cryptic)

• http://www.regular-expressions.info/quickstart.html

Simple	Regular	Expression	Symbols

• .	(period)	--- matches	any	single	character
• B	--- matches	uppercase	B
• b	--- matches	lowercase	b
• *	--- matches	zero	or	more	occurrences	of	preceding	
character
• ^	--- goes	to	beginning	of	a	line
• Example	– search	a	file	where	#	is	used	to	comment	lines
>>>	grep	^#	filename
Will	pull	out	all	the	lines	where	#	is	the	first	character	in	line

• $	--- end	of	the	line

Generally	a	good	idea	to	surround	regular	expression	with	single	quotes	on	command	line	
to	protect	it	from	being	interpreted	by	the	shell.

Simple	Regular	Expression	Symbols

• \ --- looking	for	a	symbol

• []	--- matches	member	of	the	range	within	the	brackets

• [^]	--- matches	anything	except	what’s	in	the	bracket

• Non-printable	characters:
• \t	:	for	a	tab	character	
• \r	:	for	carriage	return	
• \n	:	for	new	line	
• \s	:	for	a	white	space

Sed – stream	editor
• Command	line	tool	for	editing	files	line	by	line,	
largely	used	for	substitution
• Like	grep	for	searching,	but	can	replace	found	
pattern	with	something	else
• Want	to	change	every	instance	of	mb to	ml	in	my	
file?

>>>	sed s/mb/ml	filename

Sed

• Basic	structure	for	substitution:
• s		--- is	the	command	that	indicates	substitution
• delimiter

• Can	be	anything	you	want,	slash	(/)	is	common,	so	is	_	or	:
• But	if	you	need	to	search	something	that	has	a	/	will	need	to	quote	the	slash	

using	backslash	\
>>>	sed 's/\/usr\/local\/bin/\/usr\/bin'	file
Will	change	/usr/local/bin	to	/usr/bin	for	lines	in	file	that	contain	/usr/local/bin

• regular	expression	or	pattern	to	search	for
• replacement

• If	want	to	do	a	search	and	replace	globally	(in	entire	file),	put	“/g”	
at	end.		Otherwise	it	will	replace	only	the	first	instance	found	on	
each	line

>>>	sed 's/\/usr\/local\/bin/\/usr\/bin/g'	file

• Sed uses	regular	expressions,	same	as	grep

>>>	sed s/mb/ml	filename

awk

• Programming	language	available	on	most	Unix-like	OS
• Developed	in	1970s	(name	comes	from	first	letters	of	
last	names	of	developers)
• Useful	for	manipulating	text	files
• One	of	the	most	useful	unix tools	you	can	develop

• Also	able	to	do	floating	point	math
• Structured	as	a	sequence	of	patterns	and	then	
actions	do	perform	when	patterns	are	found
• Used	on	text	files:		columns	=	fields;	lines	=	records

awk vs	nawk vs	gawk

• Different	versions	exist
• awk – original
• nawk – “new	awk”,	version	used	on	Macs	as	“awk”
• gawk	– GNU	awk,	standard	on	linux,	compatible	
with	awk and	nawk.		Can	access	this	on	Macs	as	
well	– use	“gawk”	or	set	an	alias	for	it

• A	few	minor	differences	in	syntax	between	versions

Using	awk

• Can	call	it	from	the	command	line:
>>>	awk [options]	‘{commands}’	variables	infile
>>>	awk –f	scriptfile variables	infile

• Or	create	an	executable	awk script
• File	contains:

#!/usr/bin/awk
some	set	of	commands

>>>	chmod +x	test.awk
>>>	./test.awk

awk and	text

• awk commands	are	applied	to	every	record	(=line)	of	a	
file

• it	is	designed	to	separate	the	data	in	each	line	into	a	
field	(=column)

• essentially,	each	field	becomes	a	member	of	an	array	so	
that	the	first	field	is	$1,	second	field	$2,	third	field	$3	…

• $0 refers	to	the	entire	record

awk:	Field	separators

• the	default	field	separator is	one	or	more	white	
spaces
$1 $2				$3		$4	$5	$6				$7										$8							$9							$10			$11
1			1918				9			22		9		54	49.29			-1.698			98.298			15.0		ehb

• the	field	separator	may	be	modified	by	resetting	
the	FS	built	in	variable
• Example:

Separator is “:”, so reset it.

awk - print

• One	of	the	most	common	commands	used	in	awk
scripts	is	print

• awk is	not	sensitive	to	white	space	in	the	commands
>>>	awk –F”:”		‘{	print	$1	$3}’		/etc/passwd
nobody-2

• two	solutions	to	this
>>>	awk –F”:”		‘{	print	$1	“ “	$3}’		/etc/passwd
>>>	awk –F”:”		‘{	print	$1,	$3}’		/etc/passwd
nobody	-2

• any	string	or	numeric	text	can	be	explicitly		output	
using	“”

Assume	a	starting	file	like	so:

1	1	1918	9	22	9	54	49.29			-1.698			98.298			15.0		0.0		0.0	ehb FEQ		x

>>>	awk '{print	"latitude:",$9,"longitude:",$10,"depth:",$11}’		earthquake.txt

latitude:	-1.698	longitude:	98.298	depth:	15.0
latitude:	9.599	longitude:	92.802	depth:	30.0
latitude:	4.003	longitude:	94.545	depth:	20.0

1	1	1918	9	22	9	54	49.29			-1.698			98.298			15.0		0.0		0.0	ehb FEQ		x

• you	can	specify	a	newline	in	two	ways
>>>	awk '{print	"latitude:",$9; print	"longitude:",$10}’		earthquake.txt
>>>	awk '{print	"latitude:",$9”\n”,”longitude:",$10}’		earthquake.txt

latitude:	-1.698
longitude:	98.298

awk and	if

• If	statements	are	very	useful	in	awk:

awk and	math
• Big	advantage	– it	does	floating	point	math	(remember	bash	does	not)
• it	stores	all	variables	as	strings,	but	when	math	operators	are	applied,	it	converts	the	
strings	to	floating	point	numbers	if	the	string	consists	of	numeric	characters

• All	basic	arithmetic	is	left	to	right	associative

• +	:	addition
• - :	subtraction
• *	:	multiplication
• /	:	division
• %	:	remainder	or	modulus
• ^		:	exponent
• other	standard	C	programming	operators

• Assignment	operators
• =			:	set	variable	equal	to	value	on	right
• +=	:	set	variable	equal	to	itself	plus	the	value	on	right
• -=	:	set	variable	equal	to	itself	minus	the	value	on	right
• *=	:	set	variable	equal	to	itself	times	the	value	on	right
• /=	:	set	variable	equal	to	itself	divided	by	value	on	right
• %=	:	set	variable	equal	to	the	remainder	of	itself	divided	by	the	value	on	the	right
• ^=		:	set	variable	equal	to	the	itself	to	the	exponent	following	the	equal	sign

awk relational	operators

• Returns	1	if	true	and	0	if	false	
• All	relational	operators	are	left	to	right	associative

• <			:	test	for	less	than
• <=	:	test	for	less	than	or	equal	to
• >		:		test	for	greater	than
• >=	:	test	for	greater	than	or	equal	to
• ==	:	test	for	equal	to
• !=		:	test	for	not	equal

awk logical	operators

• Boolean	operators	return	1	for	true	and	0	for	false

• &&	:	logical	AND;	tests	that	both	expressions	are	true	
• left	to	right	associative

• ||		:		logical	OR	;	tests	that	one	or	both	of	the	expressions	are	
true

• left	to	right	associative

• !	:	logical	negation;	tests	that	expression	is	
true

Useful	awk built-in	variables

• FS:	Field	Separator	(separates	columns)
• NR:	record	number	(line	number)
• OFS	:	output	field	separator
• Default	is	whitespace

• ORS	:	output	record	separator
• Default	is	\n	(newline)

• OFMT		:	output	format	for	numbers	
• NF	:	number	of	fields	in	the	current	record

Using	variables	in	awk

• 1.	Assign	the	shell	variables	to	awk variables	after	the	body	
of	the	script,	but	before	you	specify	the	input	file
awk '{print v1, v2, NF, NR}' v1=$VAR1 file1 v2=$VAR2 file2

Or

• 2.	Use	the	-v	switch	to	assign	the	shell	variables	to	awk
variables.	
awk -v v1=$VAR1 -v v2=$VAR2 '{print v1, v2}' input_file

More	awk …

• Developing	more	complex	programs	in	awk
• Use	of	for	loops,	while	loops,	if/then/else
• Format	output
• Define	functions
• Matching	regular	expressions

• Worth	spending	time	exploring	websites/books	on	
awk functionality	– it	will	likely	become	one	of	your	
most	used	tools.

