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Interferometric radar techniques often necessitate two-dimensional (2-D) phase unwrapping, defined here as
the estimation of unambiguous phase data from a 2-D array known only modulo 2p rad. We develop a maxi-
mum a posteriori probability (MAP) estimation approach for this problem, and we derive an algorithm that
approximately maximizes the conditional probability of its phase-unwrapped solution given observable quan-
tities such as wrapped phase, image intensity, and interferogram coherence. Examining topographic and dif-
ferential interferometry separately, we derive simple, working models for the joint statistics of the estimated
and the observed signals. We use generalized, nonlinear cost functions to reflect these probability relation-
ships, and we employ nonlinear network-flow techniques to approximate MAP solutions. We apply our algo-
rithm both to a topographic interferogram exhibiting rough terrain and layover and to a differential interfero-
gram measuring the deformation from a large earthquake. The MAP solutions are complete and are more
accurate than those of other tested algorithms. © 2001 Optical Society of America

OCIS codes: 280.6730, 120.3180, 350.5030.
1. INTRODUCTION
Two-dimensional (2-D) phase unwrapping has received a
great deal of attention in recent years, owing in large part
to the advent of synthetic aperture radar (SAR) interfer-
ometry. In this application, multiple coherent radar im-
ages of the same area are combined to form interfero-
grams, with the 2-D interferometric phase arrays
providing extremely fine measurements of surface
topography,1 deformation,2 or velocity.3 Phase, however,
can be measured only modulo 2p rad, so physical quanti-
ties derived from interferometric phase data are wrapped
with respect to some modulus or ambiguity and often
must be unwrapped to provide meaningful information.

We propose a new approach for choosing phase-
unwrapped solutions given wrapped data. Through the
use of nonlinear cost functions, we cast the phase-
unwrapping problem as a maximum a posteriori probabil-
ity (MAP) estimation problem, developing approximate
models for the statistics and expected properties of inter-
ferometric SAR signals. Although faithfully modeling
elaborate probability relationships is an enormous theo-
retical task, we sidestep much of this complexity and fo-
cus instead on designing a working algorithm for use in
an applied, practical sense. We also describe a technique
based on nonlinear network optimization for approxi-
mately solving the posed estimation problem, and we
demonstrate our algorithm’s performance on interfero-
metric SAR data sets that measure both rugged topogra-
phy and surface deformation from a large earthquake.

Strictly, phase unwrapping is an impossible problem,
because an unwrapped phase array necessarily contains
information not available in the wrapped array; all phase-
unwrapping algorithms therefore rely on at least some as-
0740-3232/2001/020338-14$15.00 ©
sumptions. The most basic and most common of these
assumptions is that the true unwrapped phase field var-
ies slowly enough that neighboring phase values are
within one half cycle (p rad) of one another throughout
much of the interferogram. Where this is the case, un-
wrapped phase values may be obtained by simply inte-
grating the neighboring-pixel wrapped phase differ-
ences—called gradients in the phase-unwrapping
literature—from pixel to pixel. The difficulty of phase
unwrapping, of course, stems from the fact that in nearly
all phase fields of interest, some gradients do exceed one
half cycle, and their incorrect integration results in global
unwrapping errors. The task of a phase-unwrapping al-
gorithm therefore reduces to locating and accommodating
such gradients.

While these gradients can be handled in a variety of
ways, many popular algorithms pose phase unwrapping
as a constrained-optimization problem. In such a prob-
lem, an objective function maps unwrapped solutions to
scalar values. A solver routine is then used to find a so-
lution that minimizes the value of the objective function,
either exactly or approximately, while meeting predefined
problem constraints that ensure the solution’s validity.
The main differences between many phase-unwrapping
algorithms can thus be viewed as differences between the
algorithms’ objective functions and respective minimiza-
tion techniques.

An objective function can be any function of the set of
all phase values or, equivalently, any function of the set of
all phase gradients. In the interest of computational ef-
ficiency, however, the objective function is commonly as-
sumed to be separable so that it can be written in the
form
2001 Optical Society of America
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where Df (r) and Dc (r) are the range components of the
unwrapped and the wrapped phase gradients, respec-
tively, and Df (a) and Dc (a) are their azimuthal counter-
parts in a 2-D range-azimuth coordinate system (for side-
looking imaging radars, range and azimuth are the
across-track and along-track directions). Wrapped gradi-
ents are always assumed to be between 2p and p. The
functions g( • ) are called cost functions by analogy to
minimizing the total cost of the solution.

Ghiglia and Romero4 suggested a phase-unwrapping
framework under which the cost functions are restricted
to the form

g~Df, Dc! 5 wuDf 2 Dcup. (2)

Here the cost functions all have the same shape, as deter-
mined by the constant p, and independent weights w de-
termine each cost function’s scaling. The resulting objec-
tive function defines the weighted minimum Lp-norm
problem, or for compactness of notation, simply the Lp

problem. When p 5 2, the problem is a weighted least-
squares minimization problem, and many approaches to
solving it have been introduced.5–7 Alternatively, when
p 5 1, the linearity of the objective function permits effi-
cient solution.8,9 In the limit as p approaches zero
(henceforth p 5 0 or L0), the objective is to minimize the
weighted number of locations where the unwrapped and
the wrapped gradients differ; several algorithms for this
problem have been proposed as well,4,10–12 although as
described below, none are actually able to solve it exactly.
Note that while we reference these algorithms for com-
pleteness, we treat Lp cost functions themselves as ge-
neric optimization criteria, independent of the methods
used to minimize them and separate from any specific al-
gorithm implementation.

Regardless of the objective function used, the optimiza-
tion problem may be constrained such that congruence is
required between the unwrapped and the wrapped phase
arrays. Corresponding unwrapped and wrapped phase
values may then differ only by integer numbers of cycles,
so the assumption of congruence makes the solution space
discrete. Nevertheless, the cost functions described
above can still be used to compare different allowable so-
lutions. Moreover, for the L0 and L1 norms with integer
parameters, a noncongruent optimum can be no better
than a congruent one.11,13 For the L2 norm, however, a
noncongruent optimum is generally better than one com-
puted under the assumption of congruence, though the
former loses L2 optimality, even over the set of strictly
congruent solutions, if it is forced into congruence in a
postoptimization processing step.14

Goldstein et al.10 pointed out that for a properly un-
wrapped, congruent phase array, the sum (integral) of
phase gradients around a closed, directed loop of 2 3 2
pixels is always zero. A nonzero result, called a residue,
may arise in a wrapped phase array, however, when gra-
dients are incorrectly assumed to be less than one half
cycle. Residues thus indicate the presence of inconsis-
tencies with the assumption that all gradients are less
than one half cycle. Moreover, in the unwrapped array,
discontinuities, or lines of gradients greater than one half
cycle, necessarily run between residues of opposite signs.

For the L1 metric, Costantini9 recognized that existing,
generic minimum-cost-flow (MCF) solver routines could
be exploited through the explicit adoption of a network-
flow model13 for the phase-unwrapping problem (see Fig.
1). Each 2 3 2 residue loop integral of the wrapped
phase is a node in this network; single units of surplus
and demand (negative surplus) are assigned to nodes of
positive and negative residues, respectively, and flow is
allowed to travel on arcs connecting neighboring nodes.
In this paper, arcs are bidirectional and flow magnitudes
are integers between 2` and `, with sign denoting the di-
rection of flow. Constraints are defined so that the net
flow out of each node (total flow out minus total flow in)
must be equal to the surplus of the node. When flow is
conserved in this way, the solution is called feasible, and
a feasible solution is optimal if it also minimizes the value
of the objective function. Since arcs in the network cor-
respond to phase gradients, the direction and the magni-
tude of flow on an arc physically represent the sign and
the difference, in cycles, between the unwrapped and the
wrapped phase gradients associated with that arc. In
this way, for a given wrapped phase array, any feasible
network flow exactly corresponds to a valid unwrapped
phase array.

Using ideas from network theory, Chen and Zebker11

showed that the L0 phase-unwrapping problem is NP-
hard and therefore cannot be solved exactly in polynomial
time (unless problem classes P and NP are equivalent).15

Algorithms using the L0 objective thus compute only ap-
proximate rather than exact solutions. (Note that al-
though in some contexts the term ‘‘approximate’’ implies
performance guarantees or complexity bounds, we use it
here only colloquially.) Furthermore, because it is a gen-
eralization of the L0 problem, the optimization problem of
Eq. (1) is NP-hard as well in the absence of simplifying
assumptions. Although Carballo16 outlined conditions
under which L1 methods can be used to solve congruent
nonlinear problems, his conditions reduce to the well-
known requirement of convexity.13 The nonconvex L0

problem remains NP-hard.
Nevertheless, an objective function’s computational dif-

ficulty does not necessarily detract from its appeal. For

Fig. 1. Example network equivalent of the phase unwrapping
problem. The numbers represent a 2-D array of phase samples
(normalized to one cycle). Each 2 3 2 clockwise loop integral of
wrapped phase gradients is a node in the network, and positive
and negative residues result in supply and demand nodes.
Neighboring nodes are connected by arcs, or possible flow paths.
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example, it has been demonstrated qualitatively and con-
firmed empirically that the L0 metric is well suited to
data where the true unwrapped phase field contains
physical discontinuities.10,11,14 However, there are no
physical reasons that exactly optimal Lp solutions must
be correct. Lp norms are simply abstract mathematical
quantities, which have empirically led to workable solu-
tions.

In an effort to strengthen the physical foundations of
optimization objectives, we introduce here new objectives
based on generalized, statistical cost functions. That is,
we allow the cost functions g( • ) in Eq. (1) to take any
form and to vary in shape for different parts of the inter-
ferogram. We then choose cost functions that maximize
the conditional probability of a solution given the
wrapped phase, image intensity, and interferogram co-
herence. This implies the use of application-specific ob-
jective functions that yield greater accuracy than can be
obtained from ‘‘one-size-fits-all’’ algorithms. Separately
examining both topographic and deformation-mapping
applications of SAR interferometry, we derive simple sta-
tistical models for each, making assumptions about the
physical characteristics of the specific measurements.
We outline in Appendix A a procedure based on nonlinear
network optimization for approximating solutions to
these estimation problems. Using this procedure, we
demonstrate the performance of our algorithm on both to-
pographic and differential SAR interferograms.

2. STATISTICAL FRAMEWORK FOR
GENERALIZED COST FUNCTIONS
A constrained-optimization approach to phase unwrap-
ping involves balancing two aims: (1) the objective func-
tion should provide accurate solutions when minimized,
and (2) solutions in terms of this objective function should
be computable efficiently. The lack of complete informa-
tion in a wrapped phase array and the NP-hardness of the
general unwrapping problem sometimes make this bal-
ance a difficult one, but recent advances on the latter aim
call now for work on the former. Specifically, the solver
routine of the dynamic-cost-cycle-canceling (DCC) algo-
rithm proposed by Chen and Zebker11 can approximate
not only L0 solutions but solutions for any separable ob-
jective function (see Appendix A). We therefore derive in
this section statistically based, application-specific, gener-
alized cost functions g( • ) for computing maximally accu-
rate solutions.

Much work to date has addressed the subject of advan-
tageous weights for Lp cost functions,14 but Lp cost func-
tions all have the same shape for a given objective func-
tion (Fig. 2). Most investigations have thus treated cost-
function shape and scaling as two distinct issues. The
generalized cost functions of Eq. (1), however, handle both
together, as the cost function for each phase difference in
the interferogram has its own individual form, arbitrary
and independent of all others.

We use this flexibility to design cost functions based on
MAP estimation. That is, given a 2-D wrapped phase
field C, we develop an objective function such that its
minimization results in an estimate F̂ of the true un-
wrapped phase field F, where F̂ approximately maxi-
mizes the conditional probability density function (PDF)
f(FuC). Of course, joint PDF’s such as this are very dif-
ficult to formulate exactly, but realistic solver routines
cannot guarantee exact solutions to the NP-hard minimi-
zation problem in any event. Consequently, our ap-
proach is geared toward the design of a working algo-
rithm that—even if inexact—provides significantly better
results than other existing algorithms. Following this
philosophy, we approximate the joint PDF’s with simpli-
fying models whose refinement we leave for later work.
We present here the general methodology and practical
application of our approach, focusing on physical insight
rather than mathematical detail; the success of this ap-
proach is demonstrated in Section 3.

In our notation, capital letters denote arrays and low-
ercase letters denote individual entries in those arrays.
That is, DF is the set of all unwrapped gradients Df in an
interferogram, where Df is any particular row-wise or
column-wise gradient. Uppercase and lowercase letters
are not random variables and their specific instances.
We denote both probability mass and density functions by
f( • ). Unless otherwise noted by a subscript, f( • ) de-
scribes the random variable(s) in its argument. Thus, for
example, f(FuC) is equivalent to fFuC(FuC).

We begin by changing the problem variables, without
loss of generality, so that our goal is to estimate the set of
all unwrapped gradients DF given the set of all wrapped
gradients DC. We assume that the PDF f(DFuDC) is
separable in that individual unwrapped phase gradients
are statistically independent given their wrapped coun-
terparts and given the knowledge that the resulting un-
wrapped phase field F is a residue-free (irrotational) sur-
face. This latter condition is enforced by our solver
routine (see Appendix A), which ignores invalid, nonfea-
sible solutions. Of course, our assumption of indepen-
dence is not strictly correct, but its viability is born out by
empirically verified results, and it is in any case required
for computational tractability. Thus

f~DFuDC! 5 )
k

f~DfkuDck!. (3)

The product with index k in this expression is taken over
all rows and columns for the sets of both row-wise and
column-wise (range and azimuth) gradients. Using loga-
rithms, we transform the maximization of this product
into a minimization of sums:

minimizeH 2(
k

log@f~DfkuDck!#J . (4)

Fig. 2. Normalized cost functions for the Lp family of objective
functions. The abscissa is the difference in cycles between the
unwrapped and the wrapped gradients.
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Comparing Eq. (4) with Eq. (1), we define our cost func-
tions to be the negative logarithms of the unwrapped-
gradient PDF’s:

gk~Dfk , Dck! 5 2log@ f~DfkuDck!#. (5)

To avoid the phase-gradient underestimation effects
typical of noncongruent solutions,14,17,18 we enforce con-
gruence between unwrapped and wrapped phase values.
The conditional probability of an unwrapped gradient
may then be expressed in terms of its nonconditional PDF
as

f~DfuDc!

5 5
fDf~Df!

(
m52`

`

fDf~Dc 1 m2p!

if Df 5 Dc 1 n2p

0 otherwise

, (6)

where n and m are integers. The denominator of the
fraction does not depend on Df and has no effect on the
minimization problem. Consequently, we need to model
only the individual unwrapped-gradient distributions
f(Df) and evaluate them at integer-cycle offsets from the
wrapped phase.

As with any MAP estimate, however, our unwrapped
solution benefits from the inclusion of additional informa-
tion. All SAR interferograms are described by intensity
and coherence information, so we explicitly rewrite f(Df)
as the conditional PDF f(DfuI, r), where I is the average
of the intensities of the SAR images forming the interfero-
gram and r is the magnitude of the interferogram com-
plex correlation coefficient.19 Although the interfero-
gram phase statistics may be written very compactly in
this form, the conditional PDF actually embodies untold
complexity. Moreover, different applications have differ-
ent statistics, so we must treat each separately. We con-
centrate here on two applications of SAR interferometry:
topography and deformation.

A. Topography Measurements
We examine in this subsection the specific statistics and
resulting cost functions for topographic SAR interferom-
etry. With unwrapped phase measuring the elevation of
the target surface,1 we decompose the true unwrapped
gradients into their topographic and phase-noise parts:

Df 5 Dftopo 1 Dfnoise . (7)

The term fnoise here represents the combined phase noise
from all sources, not the phase of the complex noise.
Given the coherence magnitude, the phase noise is unre-
lated to the intensity and is independent of topographic
slope, so the conditional unwrapped-gradient PDF is the
convolution of the probability densities corresponding to
Eq. (7):

f~DfuI, r! 5 f~DftopouI, r! * f~Dfnoiseur!. (8)

We first consider the unwrapped-gradient noise distri-
bution, the second term on the right-hand side of Eq. (8).
Lee et al.20 derived analytical expressions for multilook
interferometric phase-noise PDF’s; these PDF’s can be ap-
proximated by normal distributions in areas of high cor-
relation. Since both topography and correlation usually
vary slowly, neighboring phase-noise terms can be treated
as identically distributed as well as independent. Their
difference Dfnoise is then a zero-mean Gaussian random
variable whose variance sDc

2 is twice that of the indi-
vidual phase-noise variances sc

2. We calculate sc
2 from

the phase-noise standard deviation sc , shown in Fig. 3 as
a function of r and the equivalent number of independent
looks Ni . Our model for sc is based on similar plots
given by Li and Goldstein,21 Rodriguez and Martin,22

and Lee et al.20 We note that when the correlation is
low, the normal approximation is less valid—in the worst
case, the distribution of Dfnoise is triangular, resulting
from the convolution of two uniform (2p,p) distribu-
tions. Rather than evaluate the hypergeometric func-
tions of the exact PDF expression, however, we maintain
the normal approximation even for low coherence.

In calculating sDc
2 from the observed coherence, we

must also be aware of the bias introduced by the common
coherence estimator

r̂ 5 U (
k51

N

s1ks2k*

A(
k51

N

us1ku2(
k51

N

us2ku2
U , (9)

where r̂ is the biased estimate of the true coherence mag-
nitude r, s1 and s2 are the signals forming the interfero-
gram, * denotes complex conjugation, and N is the num-
ber of complex pixels (looks) used for the estimate. Touzi
et al.23 found an exact expression for the expected value of
r̂ in terms of r, Ni , and another hypergeometric function;
we use a piecewise-linear model based on these results to
estimate r from r̂.

Independently, Carballo16 used a similar, but not iden-
tical, approach to formulate weights for an L1 minimiza-
tion problem. He gave little attention to the statistics of
the topographic part of Eq. (8), though, instead assuming
that unwrapped and wrapped gradients virtually never
differ by more than one cycle. However, it has been
shown that because of topographic effects, multiple-cycle
differences are in fact very important in topographic
phase unwrapping.11,14

Fig. 3. Model interferometric phase-noise standard deviation sc
as a function of interferogram coherence r for different numbers
of independent looks Ni .
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We therefore consider next the topographic phase term
of Eq. (8). If the topography-independent (flat-earth)
phase signature is removed, the true unwrapped topo-
graphic phase is approximately related to the relative
surface elevation z by1

ftopo 5
24pB'

lr sin u
z, (10)

where B' is the component of the interferometer baseline
perpendicular to the radar signal, l is the signal wave-
length, and u is the look angle with respect to nadir. The
unwrapped gradient Dftopo thus depends nearly linearly
on the physical surface slope Dz, although care must be
taken to properly interpret measurements in the SAR
range-azimuth coordinate system.

Separating the intensity and correlation dependencies
of the unwrapped gradient, we rewrite its conditional
PDF from Eq. (8) as

f~DftopouI, r! 5
f~DftopouI !f~ruDftopo!

f~ruI !
, (11)

assuming that r is independent of I given Dftopo . The
denominator on the right-hand side does not depend on
Dftopo and may be dropped. Examining the first PDF of
the numerator, we now model the relationship between
topography and intensity; that is, we model the depen-
dence of the radar image brightness on surface slope.
This relationship is evident on inspection of any SAR im-
age, and efforts have been devoted to both the recovery of
topographic information from SAR intensity alone and to
the radiometric correction of topographic effects.24,25

The coherent nature of SAR images—the very quality
that permits interferometry—also causes speckle in the
intensity, however, complicating the inference of topo-
graphic information from brightness. On the basis of
ideas from Lopes et al.,26 we use an adaptive speckle-
removal filter that computes the mean intensity E@I# of a
variably oriented rectangular window, selecting the orien-
tation that maximizes contrast with the local background.
Although speckle statistics and removal have been exam-
ined extensively,27 we assume perfect speckle removal to
avoid unduly complicating our model PDF’s. We then
normalize E@I#, dividing by a coarse moving-window av-
erage.

We relate the normalized, despeckled intensity to the
topography, using

E@I# 5 Cs 0A, (12)

where s 0 is the normalized radar cross section, A is the
area of the illuminated surface contributing to the mea-
surement, and C is a scaling factor that may be ignored
for normalized intensity data. Topography enters this
equation, as both s 0 and A are functions of the local sig-
nal incidence angle u i . To obtain expressions for them,
we use a facet model to represent the ground surface de-
marcated by a single range-azimuth pixel (Fig. 4). In the
model’s right-handed (x, y, z) coordinate system, earth
curvature is neglected, and x and z are aligned with in-
creasing ground range and elevation. The ground-range
and azimuth pixel spacings are denoted by Dx and Dy,
and their corresponding components of local elevation
change are denoted by Dzr and Dza . Through Eq. (10),
Dzr and Dza are therefore nearly proportional to the to-
pographic parts of the unwrapped phase gradients. Note
that while the slant-range bin spacing Dr is constant, the
ground-range spacing depends on the local slope, so

Dx 5
Dr

sin u
1

Dzr

tan u
. (13)

Assuming that the SAR viewing direction is exactly nor-
mal to the sensor velocity vector (i.e., zero squint angle),
we thus derive the following two equations:

cos u i 5
~Dzr /Dx !sin u 1 cos u

@~Dzr /Dx !2 1 ~Dza /Dy !2 1 1#1/2 (14)

A 5 @~DyDzr!
2 1 ~DxDza!2 1 ~DxDy !2#1/2. (15)

Related expressions have also been derived elsewhere.28

Guided by Eq. (12), we next examine the normalized
cross section s 0, for which a variety of models exist.29

We adopt one used by Goering et al.25 because of its ease
of evaluation given Eq. (14):

s 0 5 H kds cos2 u i 1 cosn 2u i cos u i if cos 2u i . 0

kds cos2 u i otherwise
.

(16)

Here the parameter kds affects the ratio of diffuse to
specular backscatter, n determines the sharpness of the
specular peak with incidence angle, and a constant scal-
ing factor has been dropped.

Incorporating the scattering model of Eq. (16) and the
viewing geometry relations of Eqs. (14) and (15) into Eq.
(12), we arrive at a model for the SAR intensity as a func-
tion of topography. For the scattering model parameters,
we use values of kds 5 0.02 and n 5 8, finding them to
give good agreement between the real and the simulated
SAR intensity images shown in Fig. 5. (These param-
eters might differ for other terrain types.) The simulated
image is generated from a digital elevation model (DEM)
with only range components of slope used in our bright-
ness model, as explained below. Section 3 contains more
detail about both the SAR data and the DEM. As evi-
denced by the agreement between the two images, inten-
sity is a valuable source of information about surface to-
pography and is adequately reproduced with our model.

In Fig. 6 we plot the expected image intensity as a func-
tion of the range slope Dzr for the case of zero slope in azi-

Fig. 4. Facet model used to relate topography to the brightness
of a single SAR range-azimuth pixel. Note that Dx depends on
both Dr and Dzr .
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muth (Dza 5 0). The curve is normalized so that a hori-
zontal surface (Dzr 5 0) has unit expected intensity. It
is also symmetric about its zero where the local signal in-
cidence angle is 90°, which occurs when Dzr 5 Dzr0
5 2Dr cos u. Values of Dzr between Dzr0 and zero cor-
respond to surfaces sloping away from the radar, and val-
ues of Dzr greater than zero correspond to surfaces slop-
ing toward the radar. The intensity increases without
bound as Dzr becomes large and the local incidence angle
approaches zero (Dzr → `, Dzr /Dx → tan u, cos ui → 1),
because a single range bin then encloses infinite area (i.e.,
the facet model becomes invalid). A surface for which
Dzr , Dzr0 may be in either layover or shadow. Surfaces
in shadow usually have negligible brightness, so we as-
sume that if Dzr , Dzr0 , the surface is in layover. For
example, if Dzr 5 2Dr/cos u, the surface is vertical, like
the face of a cliff. Such a surface is physically sloped to-
ward the radar, but the true elevation decreases as the
slant range increases. As Dzr becomes infinitely nega-
tive, u i again approaches zero and E@I# again becomes in-
finite.

Because variations in image intensity are much more
dependent on slopes in range than in azimuth, as de-
scribed by Guindon,24 we deal with range and azimuth
gradients separately, beginning with the former. Quali-
tatively speaking, foreshortening effects from the SAR
imaging geometry tend to make the range components of
significant slopes much greater than the azimuth compo-
nents. When the azimuth components are more signifi-

Fig. 5. Comparison of (a) actual, normalized SAR image inten-
sity with (b) simulated intensity from a DEM and scattering
model.

Fig. 6. Model intensity as a function of slant-range elevation
change for zero azimuth slope. The solid line represents the ex-
pected intensity E@I# from Eq. (12) and the dashed line is a piece-
wise linear approximation to the solid line.
cant than the range components, the total slope is often
relatively low and presents little difficulty in phase un-
wrapping. Hence with Dza 5 0, we can invert the rela-
tion illustrated in Fig. 6 to find an expected slant-range
slope from our computed value of E@I#. To facilitate this
inversion, we further simplify our brightness model by us-
ing a piecewise-linear approximation to E@I# (dashed line
in Fig. 6).

If there is no layover, Dzr . Dzr0 and the observed in-
tensity corresponds uniquely to some expected range
slope DzrI . This slope, the elevation change from one
pixel to the next, can then be related to the unwrapped
gradient Df through Eq. (10). We therefore expect a
peak in f(Dftopo

(r) uI) at DfI , where the unwrapped gradi-
ent corresponds to DzrI .

Significant phase-unwrapping errors are often caused
by layover, however, and in its presence, the observed
pixel intensity is not directly related to the desired slope.
This is because multiple parts of the imaged surface fall
into the same range bin, as illustrated in Fig. 7. A large
phase discontinuity arises from the elevation jump be-
tween range bins r0 and r1 , but the brightness of range
bin r1 does not indicate the magnitude of this discontinu-
ity. Furthermore, range bin r2 appears bright because it
contains part of the front face of the mountain, yet its un-
wrapped phase is usually assumed to represent the eleva-
tion of the mountain’s back face.

To model the effects of topography on intensity where
there is layover, we note that the elevation change from
range bin r0 to r1 in Fig. 7 is related to the full height of
the illustrated mountain. We note also that the height of
the mountain is equal to the integral of the slope along
one of its faces. Therefore, because slope is related to
brightness through Eq. (12), we can estimate the severity
a layover discontinuity by examining the intensities of all
range bins containing part of the face in layover (range

Fig. 7. Profile of a mountain in layover. The range bins r0 –r9
represent contours of constant range from the radar. The eleva-
tion z and mean intensity E@I# are plotted as they map into slant
range for this profile. Because of layover, multiple parts of a
surface may map into the same range bin; the solid and open
circles represent intersections of the ground surface with the
range contours. Unwrapped phase values are assumed to rep-
resent elevations at the solid circles, but echoes from the loca-
tions of the open circles complicate the topography–intensity re-
lationship when there is layover.
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bins r1 and r2 in Fig. 7). We therefore compute Dz lay ,
the expected maximum elevation change of an unwrapped
gradient straddling a layover discontinuity, for each pixel
as follows. First, we compare the local intensity to some
threshold value. If the intensity is below the threshold,
layover is unlikely; otherwise, we convert the intensity to
a layover-face range slope, using the relation of Fig. 6
over the layover regime (Dzr , Dzr0). We then inte-
grate the similarly calculated, intensity-derived range
slopes for the next several pixels in increasing range to
obtain Dz lay . The true elevation change may be less
than Dz lay , though, since some of the bright pixels con-
tributing to the integrated value may actually correspond
to slopes that are not in layover (Dzr . Dzr0). Layover
thus forces us to incorporate more features into our model
for f(Dftopo

(r) uI). In addition to the peak at DfI , we expect
the PDF to have a wide, platformlike section with an up-
per cutoff at Df lay , the unwrapped gradient correspond-
ing to Dz lay . This section reflects the probability that
Dftopo

(r) indeed represents a layover discontinuity.
Layover causes further complications, however. A

pixel whose unwrapped phase corresponds to a mild,
negatively sloped back face, like range bin r2 in Fig. 7,
may appear bright because it contains part of the face in
layover. The true unwrapped gradient would then be un-
related to the computed values for DzrI and Dz lay . Since
a gradient straddling a layover discontinuity cannot eas-
ily be distinguished from the gradients in the bright area
beyond the layover discontinuity, we must account for the
probability of the latter in f(Dftopo

(r) uI). We therefore in-
clude in the PDF a peak at a slightly negative value near
zero, denoted Dfback . The resulting PDF is shown in
Fig. 8. It is asymmetric, because as range increases, an
upward step in elevation due to layover is usually much
more likely than a downward one.

Having a qualitative model for f(Dftopo
(r) uI), we now re-

turn to Eq. (11) and consider f(ruDftopo
(r) ), the conditional

PDF of the coherence given the unwrapped gradient. Al-
though we have already described the relationship be-
tween the coherence and the phase noise (Fig. 3), r is also
related to the topographic part of the unwrapped gradient
through spatial or baseline decorrelation. Zebker and
Villasenor19 obtained an expression for this decorrelation
factor, denoted rs :

rs 5 maxH 0, 1 2
2uB'uRr

lrutan u iu
J . (17)

Here r is the slant range, Rr is the slant-range resolution,
and the azimuth slope is assumed to be zero. Thus as the
range slope increases and the local incidence angle de-
creases, the correlation decreases as well. In the pres-
ence of layover, though, several different parts of the sur-
face map into the same pixel, and the multiplicity of local
incidence angles then makes Eq. (17) inapplicable. How-
ever, correlation measures for areas in layover are gener-
ally very low because of actual decorrelation as well as
the random complex superposition of the different signals
contributing to the interferometric phase. This property
has been exploited by phase-unwrapping schemes that
use correlation information alone for weighting Lp cost
functions.6,14
Because there are usually other contributions to decor-
relation as well, rs is an upper bound on the expected sta-
tistical correlation r. For fixed r and variable Dftopo

(r) ,
then, the function f(ruDftopo

(r) ) has a cutoff at Dfr , the un-
wrapped gradient corresponding to the range slope for
which r 5 rs . That is, the observed correlation places
an upper limit on the expected slope; if the correlation is
high, the maximum expected slope is small. Without
more specific knowledge of other decorrelation sources,
we assume that for fixed r, f(ruDftopo

(r) ) is constant when
Dftopo

(r) < Dfr and is zero when Dftopo
(r) . Dfr (see Fig. 8).

Guided by Eq. (11), we now combine the PDF’s that re-
late topography to intensity and correlation, obtaining a
model for f(Dftopo

(r) uI, r), the conditional PDF of an un-
wrapped range gradient’s topographic component. As
this PDF is proportional to the product of f(Dftopo

(r) uI) and
f(ruDftopo

(r) ), its shape is similar to the former, but its up-
per cutoff Dfmax is determined by the lesser of the layover
cutoff Df lay and the correlation cutoff Dfr (see Fig. 8):

Dfmax 5 min$Df lay , Dfp%. (18)

Finally, with the topographic PDF f(Dftopo
(r) uI, r), we

can proceed to form our MAP cost functions through Eqs.
(5) and (8). Because the sharp peaks of f(Dftopo

(r) uI, r) are
likely much narrower than the Gaussian noise PDF with
which they are convolved, the resulting full PDF
f(Df (r)uI, r) is characterized mainly by the width of the
noise PDF and the critical unwrapped-gradient values
Dfback , DfI , and Dfmax illustrated in Fig. 8. We as-
sume that after convolution with the noise PDF, the nar-
row peaks at DfI and Dfback can be modeled by a single,
wide hump, as shown in Fig. 9. That is, the convolution
removes much of the apparent structure from
f(Dftopo

(r) uI, r), resulting in a simpler form with fewer pa-
rameters. The negative logarithm of f(Df (r)uI, r) is the
continuous-valued cost function g (r)(Df (r)), which we can

Fig. 8. Model PDF’s for the topographic component of an un-
wrapped range gradient, conditional on observed intensity and
correlation values. The PDF in the bottom panel is proportional
to the product of the curves in the top panel. Note that the
dashed curve in the top panel is f(ruDftopo

(r) ) for fixed r and vari-
able Dftopo

(r) , not vice versa.
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evaluate at integer-cycle offsets from Dc (r) to obtain dis-
crete gradient costs (i.e., flow costs) for our topographic
phase-unwrapping problem.

When Dfmax is small compared with the phase-noise
standard deviation sDf , layover is unlikely. Our model
PDF f(Df (r)uI, r) is then Gaussian with mean DfI , the
phase value suggested by the single-pixel intensity. The
cost function g (r)(Df (r)) is therefore a parabola centered
on DfI whose width is sDf (see Fig. 10). Since variances
sum,

sDf
2 5 sDc

2 1 smeas
2 . (19)

The first term on the right-hand side represents the
phase-noise variance calculated from the measured corre-
lation (Fig. 3), and the second term is a constant repre-
senting uncertainty in our estimates of E@I# and r.

When the upper cutoff Dfmax is large compared with
sDf , the cost function must include a shelflike region that
accounts for the probability of layover. This region ex-
tends out to Dfmax for positive gradient values, and its
cost is based on the conditional probability of layover. In
our implementation, we assume a constant layover cost
g lay

(r) whose value we derive empirically. The central pa-
rabola of our layover cost function is centered on Df
5 0, our assumed mean of DfI and Dfback . The vari-
ance sDf

2 includes an extra term s lay
2 , which represents

uncertainty in the location of the true peak due to lay-
over:

sDf
2 5 sDc

2 1 smeas
2 1 s lay

2 . (20)

Beyond Dfmax , the cost function increases quadratically
at a rate related to sDf .

Thus the cost function for a particular range gradient is
illustrated in Fig. 10 and may be quantified as follows.
Let Dfcrit

(r) equal @ g lay
(r)sDf

2 #1/2 with sDf
2 calculated from Eq.

(20). If Dfmax > Dfcrit
(r) ,

g ~r !~Df!

5 5
Df2

sDf
2 if Df < Dfcrit

~r !

g lay
~r ! if Dfcrit

~r ! , Df < Dfmax

~Df 2 Dfmax!2

csDf
2 1 g lay

~r ! if Df . Dfmax

,

(21)

Fig. 9. Model conditional PDF for an unwrapped range gradi-
ent, with both topographic and noise components included.
where c is a constant. Conversely, if Dfmax , Dfcrit
(r) , we

define sDf
2 according to Eq. (19) and assume that

g ~r !~Df! 5
~Df 2 DfI!

2

sDf
2 . (22)

We have thus far considered cost functions only for un-
wrapped gradients in range, yet gradients in azimuth are
equally important. Because the physical mechanisms
behind the two are similar, their cost functions have simi-
lar shapes. The parameter sDf

2 is the same for both
range and azimuth gradients because the same noise pro-
cesses affect both. The parameter Dfmax is also the same
since layover-induced discontinuities often have both
range and azimuth components. The layover-
discontinuity shelf cost for azimuth, g lay

(a) , may be greater
than g lay

(r) , though, as discontinuities may be more likely
across range gradients.

The most important difference between range and azi-
muth cost functions, however, is the two-sided nature of
the azimuth cost functions. This symmetry follows from
the azimuthal symmetry of the SAR imaging geometry.
Accounting for it, we quantify the azimuth cost functions
as follows. Let Dfcrit

(a) equal @ g lay
(a)sDf

2 #1/2 with sDf
2 calcu-

lated from Eq. (20). If Dfmax > Dfcrit
(a) ,

Fig. 10. Example cost functions for unwrapped topographic
range (top) and azimuth (bottom) gradients in the presence (solid
curves) and absence (dashed curves) of layover. Note that the
abscissa is the unwrapped gradient Df itself, not Df 2 Dc.
The model parameters are based on the physical observables as
shown and differ throughout the interferogram.
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g ~a !~Df!

5 5
Df2

sDf
2 if uDfu < Dfcrit

~a !

g lay
~a ! if Dfcrit

~a ! , uDfu < Dfmax

~ uDfu 2 Dfmax!2

csDf
2 1 g lay

~a ! if uDfu . Dfmax

.

(23)

When Dfmax , Dfcrit
(a) , layover-induced discontinuities are

unlikely, and

g ~a !~Df! 5
Df2

sDf
2 , (24)

where sDf
2 is calculated from Eq. (19).

Although this cost model does suggest that some azi-
muth gradients will indeed be very large, it does not nec-
essarily invalidate our assumption above of small azi-
muth gradients. This assumption holds as long as local
range gradients are more significant than their azimuth
counterparts. Moreover, as explained above, gradients
that straddle layover discontinuities do not affect the in-
tensity and correlation in proportion to their magnitude.

As shown in Fig. 10 (dashed curves), the layover-absent
cost functions for both range and azimuth consist simply
of parabolas with widths determined by the local correla-
tion. These cost functions are thus similar in shape to
weighted least-squares (L2) cost functions, although here
we assume congruence between the unwrapped and
wrapped solutions. On the other hand, in the presence of
layover, the cost functions are somewhat similar to L0

cost functions. Our MAP cost functions therefore receive
some validation from both the success of existing least-
squares algorithms on noisy interferograms lacking lay-
over and the success of L0 algorithms where layover is
present.

Note, however, that our cost functions are not always
centered on the wrapped gradients Dc as Lp cost func-
tions are. Having modeled the statistics of a particular
unwrapped gradient, we might expect the likelihood of an
extra cycle of phase to be much higher in one direction
than the other. For example, consider a wrapped gradi-
ent Dc 5 0.4 cycle. If we believe the topographic slope to
be zero (Dftopo 5 0), it is much more probable that the
true unwrapped gradient Df is wrapped from 20.6 than
from 1.4 cycle. Our generalized cost functions thus
nicely treat unwrapped phase gradients as random draws
from fixed probability distributions. Moreover, although
above we use cost functions centered at either Df
5 DfI or Df 5 0, more elaborate models are possible for
the cost-function minima. They might, for example, be
determined by averaging wrapped gradients over local
neighborhoods.

While our statistical cost functions establish topo-
graphic phase unwrapping as a nonlinear optimization
problem, we note again that application-specific assump-
tions were used in their development. Thus, while aim-
ing to increase accuracy for one particular phase-
unwrapping problem, we sacrifice general applicability to
others. We must therefore develop additional cost func-
tions specific to other phase-unwrapping problems as
well.

B. Deformation Measurements
Although differential SAR interferometry is closely re-
lated to the topographic application described above, it
entails different phase statistics and therefore requires a
new set of cost functions. In differential interferometry,
phase is used to measure surface deformation that may be
due to phenomena such as earthquakes, volcanism, or
glacial flow. Differential interferograms often contain
fewer abrupt changes in unwrapped phase than do topo-
graphic interferograms, but very large phase discontinui-
ties are still possible because of surface fracture and
shear. Moreover, although low fringe rates may some-
times make differential interferograms relatively easy to
unwrap away from these discontinuities, the areas near
discontinuities are often of most interest.

We begin our derivation of deformation cost functions
by again separating the unwrapped-gradient PDF’s into
their signal and noise parts:

f~DfuI, r! 5 f~DfdefouI, r! * f~Dfnoiseur!. (25)

We assume that the phase noise has the same conditional
statistics as in the topography case above. Conse-
quently, we focus on the actual deformation signature,
given by2

fdefo 5
24pdr

l
, (26)

where dr is the surface displacement parallel to the radar
line of sight (other components of displacement are not
measurable with this technique).

The unwrapped deformation gradient does not depend
on intensity in any obvious way. Although there is some-
times correspondence between topographic features and
areas of large deformation changes, this is not always the
case. Moreover, while deformation-induced decorrela-
tion lessens an interferogram’s magnitude, it has no effect
on the individual SAR intensities. Consequently, with-
out further insight into the expected deformation pattern,
we assume that the deformation signal is independent of
the intensity, so f(DfdefouI, r) 5 f(Dfdefour).

On the other hand, the relationship between deforma-
tion and correlation is much more explicit. Large dis-
placement changes imply distortions of the surface, so
they are likely accompanied by significant decorrelation
through such mechanisms as temporal scattering changes
and local misregistration. We therefore account for the
probability of a discontinuity where the correlation is low
by using a simple discontinuity model similar to our topo-
graphic layover model.

When the phase-noise PDF’s and the unwrapped-
gradient PDF’s are combined as in Eq. (25), the deforma-
tion cost functions are thus shaped as illustrated in Fig.
11, where now range and azimuth cost functions have
identical shapes. These generic deformation cost func-
tions are quantified analogously to our topographic azi-
muth cost functions of Eqs. (23) and (24), although differ-
ent physical quantities are used for our deformation
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model parameters. Specifically, if the local correlation
exceeds some threshold rmin , the cost function g( • ) there
consists only of a parabola centered at zero, whose width
is calculated from Eq. (19). Where the correlation falls
below rmin , the cost function also includes shelflike re-
gions representing the probability of a discontinuity in
the unwrapped phase. The heights of these shelves, de-
noted by gd , are related to the local conditional probabil-
ity of a phase discontinuity. The maximum probable
magnitude for this discontinuity determines Dfmax , the
upper shelf cutoff. Without more specific information,
we use empirically or experimentally derived constants
for rmin , gd , and Dfmax . For the results below, these
parameters were initially estimated through visual in-
spection of the interferogram and then refined with fur-
ther applications of the algorithm.

Thus our deformation cost functions share much with
minimum Lp-norm weighting schemes based on thresh-
olded correlation values.6,14 Our cost functions differ,

Fig. 11. Example cost functions for unwrapped differential
phase gradients when a discontinuity is expected (solid curve)
and not expected (dashed curve).
however, in that not only are they scaled, but their shapes
change in relation to our changing confidence in the un-
wrapped gradient. Furthermore, the upper cutoffs of the
discontinuity regions can prevent overestimation of dis-
continuities, avoiding some global unwrapping errors.
Congruence and the asymmetry of our cost functions
about the wrapped gradient Dc should also yield advan-
tages in accuracy, as described above.

For both the topography and the deformation cases, our
models include a number of parameters, providing great
flexibility and customizability for specific applications.
Together with the solver routine described in Appendix A,
we call our algorithm SNAPHU, an acronym for
‘‘statistical-cost network-flow algorithm for phase un-
wrapping.’’ We examine its performance in the following
section.

3. RESULTS
Our derivation of statistical cost functions followed our
goal of developing a useful, working algorithm. We now
test this algorithm on actual rather than simulated inter-
ferometric SAR data, examining how well it retrieves un-
wrapped phase fields in both the topography and the de-
formation cases.

Our test topographic interferogram is formed from two
images, acquired 105 days apart, from the European
Space Agency’s European Remote Sensing-1 satellite.
The average intensity from the individual SAR images is
shown in Fig. 5(a), and the interferogram is shown in Fig.
12(a) with magnitude displayed in gray scale and phase
displayed in color. Radar illumination is from the left
with range increasing toward the right. This 1250
3 830 pixel interferogram, formed from five looks in azi-

muth and a single look in range, depicts a desert region
north of Death Valley, California. Shown in Fig. 12(b) is
the biased interferogram coherence estimate r̂, as calcu-
lated from Eq. (9) with twenty looks in azimuth and four
looks in range. As a topographic reference, we use the
Fig. 12. Topographic test data: (a) interferogram with wrapped phase in color and magnitude in gray scale, (b) biased coherence mag-
nitude, (c) reference DEM with elevation in color and shaded relief in gray scale.
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30-m posting U.S. Geological Survey DEM shown in Fig.
12(c), where the elevation is represented in color and a
shaded-relief image generated from this DEM is shown in
gray scale. The DEM accuracy of 7.5-m rms is sufficient
for the interferogram ambiguity height of approximately
80 m.

The variety of topographic features in this interfero-
gram allows us to analyze several problems often appar-
ent in topographic phase unwrapping. Running in azi-
muth in the middle of the image are long discontinuities
resulting from layover, while the top of the image con-
tains areas of rough topography. The bottom is rela-
tively smooth, although it is not without areas of low cor-
relation.

Results from our algorithm are shown in Fig. 13 along-
side results from several other algorithms. Here, the
color represents relative unwrapped phase error, calcu-
lated by subtracting the DEM-derived unambiguous
phase from the unwrapped solutions. The interferogram
magnitude is again shown in gray scale. Since these al-
gorithms all produce congruent solutions, unwrapping er-
rors can be easily identified as patches differing from
their surroundings by integer numbers of cycles. Other
differences of less than one cycle may be due to atmo-
spheric artifacts,30 inaccuracies in the DEM, noise in the
interferogram, or artifacts from transforming and regis-
tering the DEM to radar coordinates.

SNAPHU results are shown in Fig. 13(a). As is evi-
dent from the general homogeneity of color, our algorithm
performs well, with errors confined predominantly to lay-
over regions. Overall, 94% of the pixels in the solution
are within p rad of the reference phase, and the rms error
is 1.94 rad (0.31 cycles). Since few 2p jumps are appar-
ent in Fig. 13(a), most of these errors can be ascribed not
to the phase-unwrapping process but to the sources de-
scribed above.

Chen and Zebker11 applied other algorithms to the
same data set, and those results are reproduced here in
Figs. 13(b)–13(d). Figure 13(b) shows results from the
Goldstein et al.10 residue-cut algorithm, which performs
well where it does unwrap but fails to produce a solution
for approximately half the interferogram (shown in
black). Figure 13(c) shows results from an L1 MCF
algorithm9 with edge-detection weights.11 The MCF so-
lution is good, but the rough area near the top of the in-
terferogram remains incorrectly unwrapped. Figure
13(d) shows results from a transform-based least-squares
algorithm with correlation weights and congruence en-
forced after optimization. Despite the similarities be-
tween our statistical cost functions and those of the
correlation-weighted L2 norm, the poor performance of
the latter underscores the need for more physical cost
functions where the topography is rough. It also high-
lights the disadvantages of enforcing congruence after
rather than during optimization. The SNAPHU solution
is clearly the most accurate of those compared here.

While the DEM provides reliable ground truth for the
topography data, reference data are more difficult to come
by in differential interferometry. However, the subtle-
ties and nuances of real data are also more difficult to
simulate faithfully in the latter case, so we again use real
data for testing our algorithm. We evaluate the un-
wrapped solution’s quality subjectively, examining its
geophysical plausibility.

The 2380 3 2548 pixel interferogram shown in Fig.
14(a) depicts the deformation signature resulting from
the M7.1 Hector Mine, California earthquake of October
16, 1999. As elsewhere in the paper, the interferogram
magnitude is indicated by gray level and the phase by
color. Here, rather than topographic contour intervals,
each color cycle represents 2.8 cm of relative surface dis-
placement. The data were acquired by ERS-2 during or-
bits 23027 and 23528, with a perpendicular baseline of 23
m. Topographic phase variations have been removed as
much as possible through the use of a topographic ERS
tandem interferogram (ERS-1 orbit 24664 and ERS-2 or-
bit 4991). Note that the fringe rates are in the same di-
rection on either side of the earthquake fault, so across
the fault the phase changes by tens of cycles over a nar-
row spatial region. The peak deformation is greater than

Fig. 13. Algorithm results on the topographic test interfero-
gram of Fig. 12: (a) SNAPHU, (b) reside-cut, (c) MCF, (d) least-
squares. The gray scale depicts the interferogram magnitude,
and the color represents relative unwrapped phase error with
reference to the DEM. Unwrapping errors are manifest as
jumps of 2p rad.



C. W. Chen and H. A. Zebker Vol. 18, No. 2 /February 2001 /J. Opt. Soc. Am. A 349
Fig. 14. Results of our algorithm on a differential interferogram: (a) interferogram with wrapped phase in color and magnitude in gray
scale, (b) biased coherence magnitude, (c) unwrapped solution from our algorithm, rewrapped modulo 40 rad (6.37 cycles) for display.
20 cycles, or 5.6 m. While some areas along the fault
generally appear darker in the interferogram magnitude,
these dark areas are likely due to correlation effects.
The individual SAR intensity images (not shown) do not
suggest any easily discernible relationship between defor-
mation and surface brightness at fine spatial scales. The
fault, however, is plainly visible in the interferogram co-
herence image of Fig. 14(b); as the fringe rates increase
toward the fault, the interferogram loses coherence. The
coherence estimate shown here is formed from twenty
looks in azimuth and four looks in range, while ten looks
in azimuth and two looks in range are incorporated into
the interferogram. It should be noted that speckle is
present in the intensity and magnitude images of Figs. 5
and 12–14, though it may not be visible at the resolutions
used for reproduction.

The solution from our algorithm is shown in Fig. 14(c)
with the unwrapped phase shown rewrapped modulo 40
rad (6.37 cycles) for display purposes. Away from the
fault where fringe rates are low, the interferogram is easy
to unwrap, and virtually any algorithm would be expected
to perform well. Nearer the fault, the fringe rates in-
crease and coherence decreases, but the solution still does
not present any obvious errors. That is, the algorithm
performs as well as or better than the authors unwrap-
ping the interferogram by eye. The relatively smooth un-
wrapped solution is consistent with the intuition that
shear or fracture in the surface should be limited to rela-
tively few places, mostly along the fault. By allowing
large phase gradients and discontinuities at these loca-
tions, the algorithm also appears to capture the high-
spatial-frequency information of the interferogram; it
thus avoids the distortions characteristic of algorithms
prone to excessive smoothing or slope under-
estimation.17,18 Where coherence is lost completely in
the interferogram, our algorithm produces a smooth, rea-
sonable guess at the unwrapped phase field based on the
surrounding valid areas. The overall accuracy of these
deformation measurements thus seems to be limited more
by the quality of the interferogram itself rather than by
our phase-unwrapping algorithm.

The execution times of our algorithm on a 550-MHz In-
tel Pentium III processor were approximately 100 and
1500 s for the topography and deformation cases (recall
that the latter interferogram is larger), and their associ-
ated memory requirements were 96 and 490 MB. Execu-
tion times for other data sets varied greatly, depending on
factors such as the number and density of residues in the
interferogram, the values used for model parameters, and
the quality of the initialization.

4. CONCLUSIONS
Phase unwrapping, arguably as much an art as a science,
is an attempt to solve a problem that we know to be un-
solvable. It is more than just an exercise, however, as
the difficulty of the problem does not diminish the need
for reliable solutions. Therefore, in order to obtain such
solutions, we propose a MAP methodology for the phase-
unwrapping problem. We introduce simple statistical
models and employ nonlinear cost functions to describe
the probabilities of particular unwrapped solutions given
the wrapped phase, image intensity, and interferogram
coherence. Recognizing that these cost functions consti-
tute a nonlinear optimization problem, we also develop
network-flow techniques for finding the most physically
probable unwrapped solution.

Our tests suggest great promise with this approach.
On a topographic SAR interferogram characterized by
layover, rough terrain, and low coherence, our algorithm
produces a solution in excellent agreement with our ref-
erence DEM and significantly more accurate than those of
other algorithms applied to the same data set. For our
differential test interferogram, no errors are apparent on
visual inspection of the solution, although quantitative
reference data are unavailable; the long phase discontinu-
ity and high fringe rates associated with the earthquake
fault appear to be unwrapped in a geophysically consis-
tent manner, however. Thus, while there is indeed room
for refinement in our models both theoretically and em-
pirically, our algorithm’s accuracy and reasonable effi-
ciency make it well worth considering for specific unwrap-
ping applications.

The MAP framework implies, however, that no single
algorithm will be best for all applications without modifi-
cation. Since different physical quantities are involved
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for different applications, each application should have its
own statistical models. Thus, while we might desire the
simplicity of a single, grand algorithm that is universally
applicable, realistic algorithms must generally make spe-
cific assumptions about their inputs to achieve the finest
overall accuracy.

Assumptions involved in setting up the problem cannot
be made independently of the method of solution, how-
ever, as an objective that is unsolvable is no more useful
than an objective that gives unmeaningful results when
solved. In our development, this duality guides the bal-
ance between theoretical rigor and computational man-
ageability. This balance, however, might need to be re-
adjusted for the specifics of other applications. In this
light, Lp objectives can be seen as easily solvable, coarse
approximations to more specific MAP optimization goals.
Hence existing, efficient Lp approaches can benefit from
weights based on statistical models. Conversely, the ap-
proximations used in this paper may be refined to en-
hance analytical precision at the expense of algorithm
complexity. Ultimately, many phase-unwrapping ap-
proaches are possible, and it is up to the user to decide
which is best for his or her particular needs.

APPENDIX A: APPROXIMATE NONLINEAR
NETWORK OPTIMIZATION
In this appendix we develop techniques for approximately
solving the minimization problem of Eq. (1) with arbi-
trarily shaped, generalized cost functions g( • ). First
we describe how the DCC algorithm introduced by Chen
and Zebker11 may be adapted to solve the generalized
problem, and then we describe a more efficient hybrid al-
gorithm. Readers are encouraged to examine the refer-
ences for background on network theory and its applica-
tion to phase unwrapping.9,11,13,31

As described in Section 1, any wrapped phase field im-
plies a gridlike network (Fig. 1), and any unwrapped so-
lution for it corresponds to a unique feasible flow. The
iterative DCC algorithm, similar to Flynn’s algorithm,8

maintains the feasibility of its intermediate solutions by
augmenting flow on closed cycles or loops, thereby pre-
serving flow conservation. The algorithm improves the
current solution by selecting cycles that have net negative
residual or incremental flow costs. Suppose arc a on the
network has x0 units of flow on it and has the cost func-
tion g(x). The addition of d units of flow to a results in a
total cost change of g(x0 1 d) 2 g(x0). For nonlinear
cost functions, these residual costs depend on both x0 and
d, so they must be recalculated after each flow augmenta-
tion. The DCC algorithm does exactly this, allowing it to
find approximate L0 solutions. Exact solutions cannot be
found, as expected given the NP-hardness of the problem.

Though intended for the L0 objective function, the DCC
algorithm may in fact be used with arbitrary cost func-
tions as long as residual costs are calculated appropri-
ately. That is, for an arbitrary cost function g(x), the re-
sidual cost ca for arc a is simply the incremental cost

ca~x0 , d! 5 g~x0 1 d! 2 g~x0!, (A1)

where x0 is the existing flow on the arc and d is the flow
increment. Since the cost functions are evaluated inde-
pendently and then summed, as in Eq. (1), the functions
g( • ) may take independent, arbitrary shapes—including
those defined by Lp norms. If all cost functions are con-
vex, the solution will be exact;13 otherwise, it will be ap-
proximate.

We now apply ideas from efficient linear (MCF or L1)
approaches to the congruent, nonlinear, generalized-cost
case. The network simplex algorithm31 iteratively im-
proves intermediate spanning-tree solutions in which
each node is labeled by a potential, the residual cost of
sending d units of flow up the tree to the tree root. A
cycle is formed with the addition of any nontree arc to the
tree. Thus, if the tree is nonoptimal, a pivot is per-
formed: A nontree arc is added to the tree, flow is possi-
bly augmented on the resulting cycle, and one arc on the
cycle is dropped, resulting in a new, better spanning tree.
The algorithm pivots from one spanning tree to another,
improving node potentials and canceling negative-cost
cycles as it goes.

We use this spanning-tree approach in our hybrid algo-
rithm to find negative cycles. As with the DCC algo-
rithm, residual costs are calculated in terms of the cur-
rent arc flows and the flow increment d. Because of the
nonlinearity of generalized costs, each node is assigned
two potentials: One is the residual cost of sending d
units of flow along the tree to the root, and the other is the
residual cost of the same flow in the opposite direction.
Additionally, each nontree arc a is also associated with an
apex node, the node closest to the root on the cycle formed
by adding a to the current spanning tree. Consider
nodes p and q, and the nontree arc a going from p to q.
Let m be the apex node for a, and let p in

( • ) and pout
( • ) denote

inward and outward potentials. The addition of arc a re-
sults in a negative cycle if

~pout
~p ! 2 pout

~m !! 1 ~p in
~q ! 2 p in

~m !! 1 ca , 0. (A2)

Because pivots that make one set of potentials better may
make the other set worse, our implementation performs
only pivots that augment flow on negative cycles or that
improve outward, not inward, potentials (pout

(p) 1 ca

2 pout
(q) , 0). After each pivot, the potentials and the

tree structure are updated as in the network simplex
algorithm.31 Affected apex pointers must be reset as
well.

Further speed improvements can be made by adopting
a tree growth strategy similar to the one used by
Pallottino.32 Applying this idea to our algorithm, we be-
gin with an arbitrary root node and grow a spanning tree
T, maintaining its optimality over each major algorithm
iteration. During each major iteration, a set number of
new nodes is first added to T in the order prescribed by
Dijkstra’s algorithm.13 Then, with use of pivots, T is re-
optimized in terms of the nodes it spans. After T spans
all nodes, the algorithm terminates.
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