

Phase Residuals

- Generally try to reduce phase residuals as much as possible.
- Are we making any assumptions in the processing?

Phase Residuals

- Generally try to reduce phase residuals as much as possible.
- Are we making any assumptions in the processing?
- YES! Remember all the troposphere, ocean load and other models?
- · Worthwhile to investigate phase residuals for systematic 'signals'!
- Might find new application for GPS!

RVBM wrt AC17 – Subdaily Positions

Explosion: 04 April 2009, 14:00 to 14:40 UTC

Grapenthin et al., JVGR (2013b)

Explosion: 04 April 2009, 14:00 to 14:40 UTC

Grapenthin et al., JVGR (2013b)

Explosion: 04 April 2009, 14:00 to 14:40 UTC

Grapenthin et al., JVGR (2013b)

Phase Residuals: Clean up ...

Phase Residuals: Clean up ...

Plumes w/ GPS Why do we care?

Plumes w/ GPS Why do we care?

Plumes: What's with Remote Sensing?

Satellite Repeat Times:

Sensor	Temporal Resolution	Spatial Resolution
AVHRR	1-6 h	1×1 km
MODIS	2×daily	1×1 km
GOES	25 min	TIR: 4-8 km
OMI	2×daily	13×24 km
ASTER	16 days	TIR: 90 m

Webley et al., JVGR (2013)

SNR: Signal to Ratio as a Signal

SNR from L1 Code vs L2 Code & Phase:

Larson, GRL (2013)27

SNR: Signal to Ratio as a Signal

Plume in signal travel path: Signal strength drops:

SNR: Signal to Ratio as a Signal

Where is the plume?

Plumes: SNR vs. Phase Residuals

- phase residuals: mostly affected by water vapor
- SNR: mostly affected by solids
- some plumes will show up in one method, but not the other.

- direct (A_d) and reflected (A_m) signals interfere – multi-path
- interference effect provides:
 - how wet reflecting surface is
 - distance between reflecting surface and antenna
- High-precision GNSS antennas are designed to suppress multipath
- don't entirely remove it, but
 A_m << A_d (A is SNR
 Amplitude, see below)

Fig. 2 Geometry of a single ground-bounce multipath signal and effects on signal power, for antenna height h and satellite elevation angle θ . Concentic dashed circles indicate power levels of receiving antenna gain pattern G (solid line), while arrows indicate GPS signal patts. For an incoming GPS signal of power P_{θ} , the direct signal will pierce the gain pattern at an angle equivalent to the satellite elevation angle, so that $A_{d} = PG(i+\theta)$. A parallel incoming signal will be reflected from the ground and attenuated by a reflectivity factor R_{ϕ} . Assuming perfect specular reflection, the attenuated, multipathed signal will enter the gain pattern at the negative (below-horizon) satellite elevation angle, so that $A_{m} = (PR_{\phi}) G(-\theta)$. In general, $G(i+\theta) > G(i-\theta)$. Gain pattern pierce points are indicated by large filled circles, with elevation angles marked on the outside ringe

- new L2 C/A (L2C) (Block IIR-M satellites and above) 20 db-Hz improvement in recorded SNR over old L2 signals
- direct component of SNR must be removed
- MP contribution to SNR is small, but oscillatory
- direct contribution to SNR large in magnitude, but only 1 complete cycle per satellite pass
- depending on application discard data above/below certain elevation angles

Fig. 3 a L2 SNR data for satellite (PRN) 9 at TASH on 2005 March 26; b SNR data for setting satellite with direct signal contribution removed with a low-order polynomial

Larson et al., 2008, GPS Solutions

Reflectometry by satellite: Fresnel Zones

- Fresnel zone characterizes GPS-IR footprint
- results in large footprint of 20-30 m radius for most GPS antennas
- compare to 0.01-5 m² of in situ sensors
- hole to the north: due to satellite orbit geometry

Larson et al., 2016, Wiley Interdiscip. Rev.: Water

Reflectometry by satellite: Fresnel Zones

- Fresnel zone characterizes GPS-IR footprint
- results in large footprint of 20-30 m radius for most GPS antennas
- compare to 0.01-5 m² of in situ sensors
- hole to the north: due to satellite orbit geometry

Larson et al., 2016, Wiley Interdiscip. Rev.: Water

- depends on antenna height, h and satellite elevation angle, θ (e.g., Hannah, 2001):
 - semi-minor axis $r_{minor} = \sqrt{\lambda h/sin(\theta)}$
 - semi-major axis $r_{major} = r_{minor}/sin(\theta)$

- multipath from horizontal, planar reflectors (ground) simple to model
- multipath affects all observations (pseudorange, carrier phase, SNR), focus on SNR!
- SNR independent of orbits, atmospheric delays, clocks!
- MP contribution to GPS SNR (signal to noise ratio):

- multipath from horizontal, planar reflectors (ground) simple to model
- multipath affects all observations (pseudorange, carrier phase, SNR), focus on SNR!
- SNR independent of orbits, atmospheric delays, clocks!
- MP contribution to GPS SNR (signal to noise ratio):

$$SNR = Acos\left(\frac{4\pi h}{\lambda}sin(E) + \phi\right)$$
 $f = \frac{4\pi h}{\lambda}$

- SNR: signal to noise ratio
- f: multipath frequency
- h: antenna height
- λ: GPS signal wavelength

- E: satellite elevation angle
- A: SNR amplitude
- φ: SNR phase offset

- SNR interference pattern related to:
 - snow depth: linearly related to SNR frequency
 - soil moisture: near surface changes produce small changes in SNR phase offset
 - vegetation water content: decreases in SNR amplitudes
- Daily products at http://xenon.colorado.edu/portal.

Figure 7. Snow depth measured at GPS site near Galena, Idaho for three water years. For clarity, error bars are not shown, but on average are 4 cm.

Figure 8. Volumetric soil moisture estimated at a PBO site in Northern California. Daily precipitation data come from NLDAS.

Larson and Small, 2014, Proc. IGARSS

Reflectometry: Soil Moisture Algorithm (Chew et al, 2016)

- · phase most affected by changes in soil moisture
- BUT: surface slope and vegetation permittivity and height also affect phase
- solution: estimate vegetation impact from amplitude, predict its impact on phase and remove it (*Chew et al., 2015; 2016*)
- once vegetation removed from measurement get soil moisture:

Reflectometry: Soil Moisture Algorithm (Chew et al, 2016)

- · phase most affected by changes in soil moisture
- BUT: surface slope and vegetation permittivity and height also affect phase
- solution: estimate vegetation impact from amplitude, predict its impact on phase and remove it (*Chew et al., 2015; 2016*)
- once vegetation removed from measurement get soil moisture:
 - removing the mean of the 15% lowest phase measurements
 - determine residual soil moisture content SMC_{resid} (USGS STATSGO, gravimetry)
 - convert phase changes to SMC: $SMC_t = S\Delta\phi_t + SMC_{resid}$
 - S is scaling factor \approx 1.48 cm³/cm³/deg (Chew et al., 2014)
 - average SMC along all satellite tracks for each day to get site average

Reflectometry: Soil Moisture Algorithm (Chew et al, 2016)

Volumetric soil moisture observations at PBO site VIMT compared to NLDAS precipitation records, California, Estrella:

http://xenon.colorado.edu/portal

Reflectometry: Vegetation Correction

Reflectometry: Vegetation Correction

1) Your own campaigns: periodically go out and occupy benchmarks

2) build continuous sites (\$10+k)

3) data archives

- UNAVCO DAI http://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html
- UNAVCO FTP ftp://data-out.unavco.org/pub/
- SOPAC ftp://garner.ucsd.edu/pub/, http://sopac.ucsd.edu/dataBrowser.shtml
- UNR (products) http://geodesy.unr.edu/billhammond/ gpsnetmap/GPSNetMap.html (have ftp, too)
- regional networks, e.g. BARD: http://seismo.berkeley.edu/bard/

- 3) data archives (continued)
 - Japan GEONET: open, but need to register http:// datahouse1.gsi.go.jp/terras/terras_english.html
 - New Zealand GEONET: ftp://ftp.geonet.org.nz/gps/,
 1Hz: ftp://ftp.geonet.org.nz/rtgps/rinex1Hz/PositioNZ/
 - NSF funded research required to make data available publicly, not all research in US NSF funded, though
 - Other countries may not have open data sharing policy contact potential collaborators!