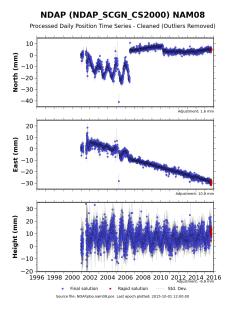
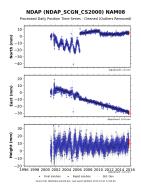

ERTH 455 / GEOP 555 Geodetic Methods

– Lecture 13: InSAR - Making the Interferogram –


Ronni Grapenthin rg@nmt.edu MSEC 356 x5924

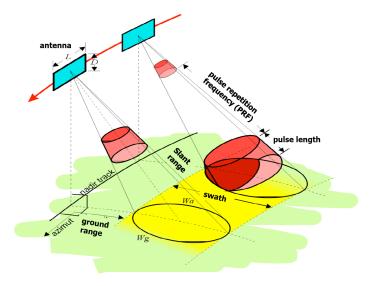
October 04, 2017

New Segment: "Guess the Process"


New Segment: "Guess the Process"

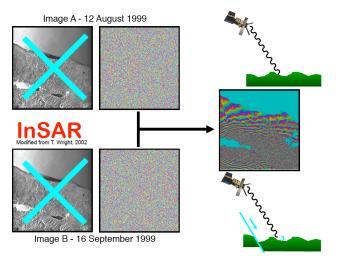
source: UNAVCO

New Segment: "Guess the Process"


source: UNAVCO

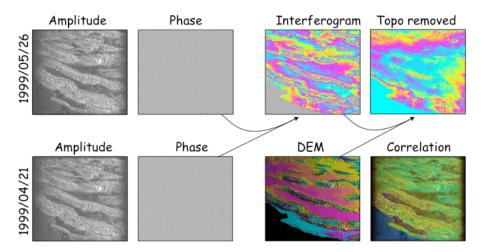
Equipment and Configuration History

Double-click on a row to see the configuration synopsis for that occupation.


Start Time 🔻	End Time	Receiver	Receiver Serial	Receiver UNAVCO ID	Firmware	Antenna	Antenna Serial
2010 Jul 03 00:00	2015 Oct 03 23:59	TRIMBLE NETRS	4611206670	20811	1.3-0	ASH701945B_M	CR620012201
2006 Jul 14 16:35	2010 Jul 02 23:59	TRIMBLE NETRS	4611206670	20811	1.1-2 19 Apr 2005	ASH701945B_M	CR620012201
2006 Mar 27 18:53	2006 Jun 30 23:59	TRIMBLE NETRS	4549261314	20069	1.1-2 19 Apr 2005	ASH701945B_M	CR519991876
2005 Apr 20 01:29	2006 Mar 27 17:32	TRIMBLE NETRS	4427235673	15582	0.3-9	ASH701945B_M	CR519991876
2000 Dec 30 00:01	2005 Feb 08 23:59	ASHTECH Z-XII3	LP03246	not provided	CD00	ASH701945B_M	CR519991876

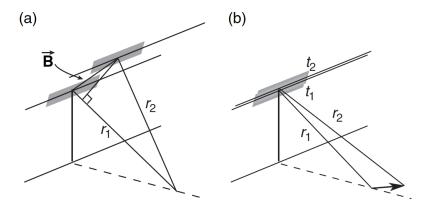
InSAR - General Concept

loaned from J. Freymueller


InSAR - General Concept

loaned from R. Bürgmann

complex values radar signal contains information on amplitude $a = \sqrt{Im^2 + Re^2}$, and phase $\phi = \arctan \frac{Im}{Re}$


InSAR - General Concept

loaned from J. Freymueller

Difference between InSARs

Topography: look at same thing from 2 views (SRTM) **Deformation:** look at same thing from same point and see whether it moved

Simons and Rosen, 2007

Make interferogram from 2 Single Look Complex images (images are in radar coordinates: range ρ , azimuth *a*):

- 1 align reference and repeat images to sub-pixel accuracy
- 2 multiply complex images (SLC) to form complex interferogram
- 3 extract phase: $\phi_2 \phi_1 = \arctan \frac{lm}{Re}$

- take 100s of small sub-patches (e.g. $64\times 64)$ from master and slave
- 2D cross correlation of patch pairs
- determine 6-parameter affine transformation to align slave to master image
- affine: parallel remains, straight remains, points preserved

Making an Interferogram: Step 2 - Multiply

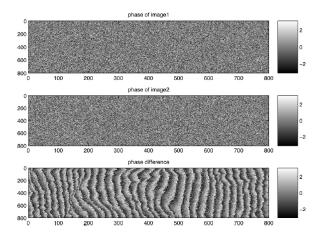
Complex number of each pixel, C(x), in terms of amplitude, A(x), and phase, $\phi(x)$:

$$C(x) = A(x)e^{i\phi(x)}$$

with position vector $\mathbf{x} = (\rho, a)$ defined by range and azimuth

Making an Interferogram: Step 2 - Multiply

Complex number of each pixel, C(x), in terms of amplitude, A(x), and phase, $\phi(x)$:


$$C(x) = A(x)e^{i\phi(x)}$$

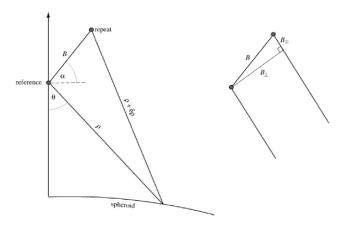
with position vector $\mathbf{x} = (\rho, a)$ defined by range and azimuth Multiply (pixel by pixel, note complex conjugate!):

$$C_2 C_1^* = A_2 A_1 e^{i(\phi_2 - \phi_1)} \\ = Re(x) + i Im(x)$$

Making an Interferogram: Step 3 - Get Phase

$$\phi_2 - \phi_1 = \arctan \frac{lm(C_2 C_1^*)}{Re(C_2 C_1^*)}$$

What's in the phase?


$$\phi = \mathbf{E} + \phi_{topo} + \mathbf{D} + \epsilon_{orbit} + \mathbf{I} + \mathbf{T} + \epsilon$$

where:

- E: earth curvature (almost planar, known)
- ϕ_{topo} : topographic phase (broad spectrum)
- D: surface deformation (unknown, we want to know!)
- ϵ_{orbit} : orbit error (almost a plane, mostly known)
- I: Ionospheric Delay (plane or 40 km wavelength waves!)
- T: Tropospheric Delay (power law, unknown)
- ϵ : phase noise (white, unknown)

EarthShape = curvature + topography

Repeat-pass interferometry geometry:

 map topography from lat, lon, height to radar coordinates and topography over range, azimuth t(ρ, a)

- map topography from lat, lon, height to radar coordinates and topography over range, azimuth t(ρ, a)
- read row of data from reference and repeat images

- map topography from lat, lon, height to radar coordinates and topography over range, azimuth t(ρ, a)
- read row of data from reference and repeat images
- use precise spacecraft orbit to get *b* (eference orbit radius), *B* (baseline length), α (baseline orientation)

- map topography from lat, lon, height to radar coordinates and topography over range, azimuth t(ρ, a)
- read row of data from reference and repeat images
- use precise spacecraft orbit to get *b* (eference orbit radius), *B* (baseline length), α (baseline orientation)
- interpolate topography to each range pixel get look angle from:

$$\theta_{\rho,a} = cos^{-1} \left[\frac{(b^2 + \rho^2 - (r_e + t(\rho, a)))^2}{2\rho b} \right]$$

- map topography from lat, lon, height to radar coordinates and topography over range, azimuth t(ρ, a)
- read row of data from reference and repeat images
- use precise spacecraft orbit to get *b* (eference orbit radius), *B* (baseline length), α (baseline orientation)
- interpolate topography to each range pixel get look angle from:

$$\theta_{\rho,a} = cos^{-1} \left[\frac{(b^2 + \rho^2 - (r_e + t(\rho, a)))^2}{2\rho b} \right]$$

 with look angle for each range pixel, calculate phase correction for repeat image:

$$\phi_{
ho,a} = -\frac{4\pi B}{\lambda} sin(heta_{
ho,a} - lpha) + \frac{2\pi B^2}{\lambda
ho} cos^2(heta_{
ho,a} - lpha)$$

- map topography from lat, lon, height to radar coordinates and topography over range, azimuth t(ρ, a)
- read row of data from reference and repeat images
- use precise spacecraft orbit to get *b* (eference orbit radius), *B* (baseline length), α (baseline orientation)
- interpolate topography to each range pixel get look angle from:

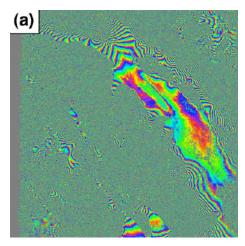
$$\theta_{\rho,a} = cos^{-1} \left[\frac{(b^2 + \rho^2 - (r_e + t(\rho, a)))^2}{2\rho b} \right]$$

• with look angle for each range pixel, calculate phase correction for repeat image:

$$\phi_{
ho,a} = -rac{4\pi B}{\lambda} sin(heta_{
ho,a} - lpha) + rac{2\pi B^2}{\lambda
ho} cos^2(heta_{
ho,a} - lpha)$$

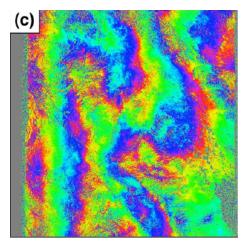
multiply C₂ C^{*}₁

- map topography from lat, lon, height to radar coordinates and topography over range, azimuth t(ρ, a)
- read row of data from reference and repeat images
- use precise spacecraft orbit to get *b* (eference orbit radius), *B* (baseline length), α (baseline orientation)
- interpolate topography to each range pixel get look angle from:

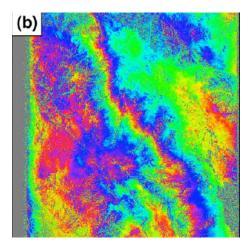

$$\theta_{\rho,a} = cos^{-1} \left[\frac{(b^2 + \rho^2 - (r_e + t(\rho, a)))^2}{2\rho b} \right]$$

• with look angle for each range pixel, calculate phase correction for repeat image:

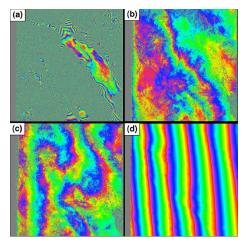
$$\phi_{
ho,a} = -rac{4\pi B}{\lambda} sin(heta_{
ho,a} - lpha) + rac{2\pi B^2}{\lambda
ho} cos^2(heta_{
ho,a} - lpha)$$


- multiply C₂ C₁*
- extract phase difference $\phi_2 \phi_1 = \arctan(\frac{lm}{Re})$

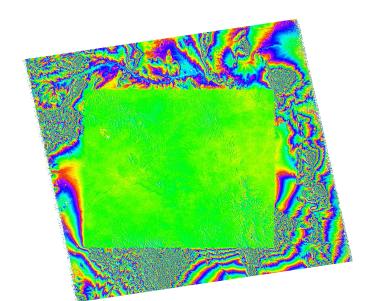
1.95 km baseline Interferogram, no topo removed (120 fringes need removal):


1.95 km baseline Interferogram,

topography correction using approximate formulas:


1.95 km baseline Interferogram,

topography correction using exact(er) formulas:



1.95 km baseline Interferogram,

Difference between exact and approx. formulas = 0.6 m ramp

In one image

