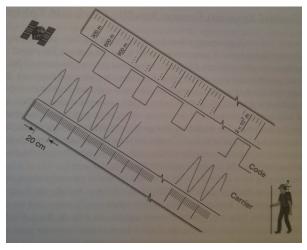
ERTH 491-01 / GEOP 572-02 Geodetic Methods


- Lecture 05: GPS Measurement Models, Position Estimation –

Ronni Grapenthin rg@nmt.edu MSEC 356 x5924

August 31, 2015

Measurement Models

- Code Phase Measurement (today)
- Carrier Phase Measurement

Misra and Enge, 2011, GPS-Signals, Measurements, and Performance

Position Estimation w/ Pseudoranges

- Positioning by (pseudo-)ranging
- range: geometric distance between satellite and receiver
- pseudorange: includes distance, clock error effects, path delays

Position Estimation w/ Pseudoranges

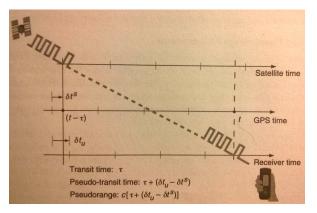

- Positioning by (pseudo-)ranging
- range: geometric distance between satellite and receiver
- pseudorange: includes distance, clock error effects, path delays

$$\rho = \mathbf{r} + \mathbf{c}(\delta t_u - \delta t^s) + \mathbf{I} + \mathbf{T} + \epsilon$$

- ρ pseudorange
- r true range to satellite
- c speed of light
- δt_u receiver clock bias
- δt^s satellite clock bias
- I, T Ionospheric and tropospheric delays
- ϵ unmodeled effects, measurement errors, etc.

- Want range, get pseudorange: noisy and biased
- quality of range estimate depends on ability to deal with biases, errors
- more on those later!

Pseudorange Measurement Model

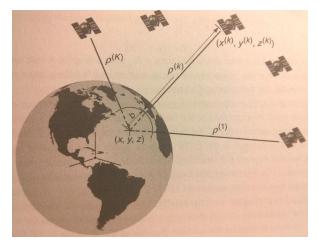


Misra and Enge, 2011, GPS-Signals, Measurements, and Performance

- need to deal with receiver t_u , satellite clocks t_s , and GPS time (t)
- τ travel time of specific code
- PRN correlation shift gives estimate of τ
- receiver: $t_u = t + \delta t_u \dots |\delta t_u| \le 1 \text{ ms} (\approx 300 \text{ km})$
- satellite: $t^s = t + \delta t^s \dots |\delta t^s|$ small (atomic clock)

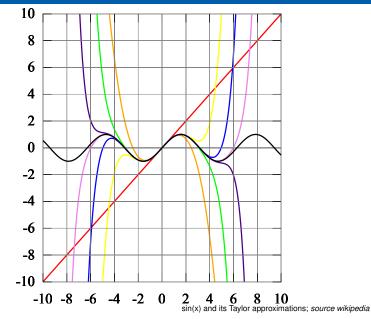
Pseudorange Measurement Model

 $\rho = c(\tau +)$



Misra and Enge, 2011, GPS–Signals, Measurements, and Performance

- need to deal with receiver t_u, satellite clocks t_s, and GPS time (t)
- τ travel time of specific code
- PRN correlation shift gives estimate of au
- receiver: $t_u = t + \delta t_u \dots |\delta t_u| \le 1 \text{ ms} (\approx 300 \text{ km})$
- satellite: $t^{s} t + \delta t^{d} = |\delta t^{s}|$ small (atomic clock)


Pseudorange Measurement Model

Derivation in notes ...

Misra and Enge, 2011, GPS-Signals, Measurements, and Performance

Taylor expansion

