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“Guess the Process”
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L Figure 2. Comparison of vertical motion at P158 and nearby (<30 km) stations.
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Figure 3. Signal to noise ration (top) and multipath (bottom) for P158.

.com/112042426109504523574/posts/62kUxwSWCiB
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“Guess the Process”

2014-03-15 (morning)

Figure 4. P158 at installation (left), ~10 years later (middle), ~10 years+2 hours later (right). The small tree north of the station
grew into a larger tree and was removed on March 3, 2014
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Parameter Estimation

o We have measurements and an idea about the process - how do
we get best estimate for parameters? E.g.,

d=a+bxx

where

e d are the measurements (column vector)
e x are the “coordinates” of the measurements (column vector)
e a, b describe the process (scalars)

e What is a best estimate?

¢ Yes, inference of parameters from measurements is an
estimation! WHY?
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Matrix Notation

...onboard ...
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Parameter Estimation

Let’s look at an example ...
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Least Squares Solution

least squares is general approach to solve linear systems of
equations

linear systems obey superposition and scaling
assume m; are model parameters, which of these are linear?

d = my+ mex —(1/2)max?
d = (my—mx)"/2 - m2x

General form: d = Gm 4+ ¢

Solve for m!
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Least Squares Solution

least squares is general approach to solve linear systems of
equations

linear systems obey superposition and scaling
assume m; are model parameters, which of these are linear?

d = my+ mex —(1/2)max?

d = (my—mx)"/?—méx
General form: d = Gm + ¢
e dis data vector
e G design/model/system matrix || Green’s functions
e m model parameters that “tweak” G
e ¢ residuals / measurement errors

Solve for m!
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Least Squares Solution

e General form: d = Gm + ¢
o Least squares solution: mest = (GTG) 'G'd

How to get there?

Most problems result in same least squares solution
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Least Squares Solution

e General form: d = Gm + ¢
o Least squares solution: mest = (GTG) 'G'd

How to get there?
o Variational approach:

e assume optimal solution minimizes length, j of the residual vector r:
j=rTr

¢ Probabilistic approach:

e assume optimal solution is most probable one (maximum
likelihood), derived from probability density function of observing
measurements

e Geometric approach:

e solution is a projection from data space into model space, what is

projection of vector b in direction of vector a

Most problems result in same least squares solution



Variational Approach

e choose solution where residual vector r has minimum length
e most common is standard geometric / Euclidean length / L, -
norm:

N
Lo=(rf+r5+rs+r7...) V2= ] r?
i=1

e L4 - norm less sensitive to bias from single bad pointS'

= (Ir| + [r| + |rs| + |ra] ... )"V/2 = Zlf/
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Variational Approach

e choose solution where residual vector r has minimum length
e most common is standard geometric / Euclidean length / L, -
norm:

Lo=(r2+r2+r2+r2..) 12 =

N
>
i=1

e L4 - norm less sensitive to bias from single bad points:

N
Ly = (In] + |ral + Ir3] + |4 ..) 72 = i
i=1
Solutions:
o Least squares solution: megt = (GTG)'G'd
e L4 solution: GTRGmMest = G'Rd
R: diagonal weighting matrix : R;; = 1/|r|
nonlinear, need iterative alorithm (IRLS) to solve
IRLS starts with m%, = meg,1, Solution, construct R® using
residuals
iterate until some threshold reached 10/13



Variational Approach

d=Gm+¢

calculate mest = (GTG)~'G™d

get residuals rest = d — GMmegt

define j(m) = r'r = (d — Gm)T(d — Gm)
find minimum j: §j(mest) = 0
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Confidence Intervals

« if independent and normally distributed data errors:
e COV(my,) = o’(GTG)™!
e get 95% confidence intervals:

e each model parameter m; has normal distribution
e mean given by corresponding m; tye
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Confidence Intervals

« if independent and normally distributed data errors:
o COV(my,) =0?(GTG)™"
e get 95% confidence intervals:

e each model parameter m; has normal distribution
e mean given by corresponding m; tye
e variance COV(my,);

my, + 1.96(diag(COV(my,)))"/?

e 1.96 comes from:

1.960

e = dx ~ 0.95
ov2n J-1.960
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Parameter Estimation // Inverse Problems are hard ...
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Parameter Estimation // Inverse Problems are hard ...

e model existence
e There may be no model that fits data (exactly)
e physics are approximate (or wrong)
e data contain noise
e model uniqueness
e There may be other models than mye that satisfy data
e e.g., non-trivial null space Gmg =0
e smoothing or other biases may affect solution
e model resolution analysis is critical!
¢ instability
e small change in measurement results in enormous change in
parameter estimates
e possibly stabilize such problems regularization (smoothing)
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