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Guess The Process

P299 (Duckworth_CN2007) NAM08
Processed Daily Position Time Series

100 -

North (mm)

NoOB O @

o O o o

T T T
T

o
I

Adjustment: -51.0 mm

N
o

|
N
o o
L
T

—40 L

East (mm)

—60] L
—80 L

Adjustment: 29.3 mm

40 L " L L L L

30
204
104

Height (mm)

—104

2010 2012 2014 2016

Adjusiment: -13.2 m’

2004 2006 2008

« Finalsolution s Rapid solution Std. Dev.
Source file; P299.pbo.nam0e.pos Last epoch plotted: 2015-11-02 12:00:00

UNAVCO 2/29



Guess The Process
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Guess The Process
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Guess The Process
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Plate Fixed Reference Frames

Velocities with respect to "PLATE-NAME"

very convenient for visualization purposes and modeling of
tectonic deformation

To convert into plate-fixed frame we need plate motion and
velocities in the same geodetic frame (e.g., ITRF2008)

Transformation:

4/29



Plate Fixed Reference Frames

¢ Velocities with respect to "PLATE-NAME"

e very convenient for visualization purposes and modeling of
tectonic deformation

¢ To convert into plate-fixed frame we need plate motion and
velocities in the same geodetic frame (e.g., ITRF2008)

¢ Transformation: subtract predicted motion based on plate angular
velocity from observed velocity
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Reference Frames — ITRF vs. fixed (stable North
America)

courtesy: Jeff Freymueller, UAF
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Reference Frames — stable North America

extension across Basin
and Range

Shear on San Andreas
System

Subduction strain in
Cascadia, Alaska

et al.

Scale

—
20 mm/yr
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Reference Frames — Tibet

“Tibetan Plateau Reference Frame”
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Gan et al. (2007) explained these motions in terms of a series of blocks separated by
mostly strike-slip faults = plateau 1s deforming, but not changing area.

courtesy: Jeff Freymueller, UAF
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NOAM Poles
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courtesy: Jeff Freymueller, UAF
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Why is NOAM Pole poorly determined?
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Why is NOAM Pole poorly determined?

courtesy: Jeff Freymueller, UAF
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Why is NOAM Pole poorly determined?

courtesy: Jeff Freymueller, UAF

tectonics in western North
America

glacial isostatic adjustment in
northern North America

SE is thought to be stable on
geologic and geodetic time
scales

limited area to determine plate
angular velocity, susceptible to
bias
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The Elastic Rebound Model

e Between earthquakes: steady
motion on the fault

¢ Loads fault, strain
accumulates in vicinity of fault

e During earthquakes: fault
breaks, strain is released and
fault vicinity catches up with
far field motion

e Elastic system: interseismic
strain accumulation is opposite
of co-seimic strain release - no
net straining.

IRIS
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Wallace Creek
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The deformation cycle

Displacement

Displacement

coseismic coseismic

interseismic

postseismic

T COSeismic

Time

permanent
e | deformation

coseismic

interseismic
postseismic

Time

¢ Interseismic: constant velocity

at given site - linear
displacements

Co-seismic: Step in timeseries
controlled by magnitude,
locking depth and distance of
seismic rupture

Post-seismic: afterslip,
visco-elastic relaxation,
poroelasticity; decay related to
mechanism and lithospheric
rheology
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The deformation cycle

Eam\%uull:ke Tectonic drift

(April 6,2009) (18.93 mm/yr)

Postseismic
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Roberto Devoti, INGV

Earthquake: sudden slip on fault
M,, 4-5: a few centimeters average slip on fault

M,, 7: a few meters average slip on fault

M, 9: 10-20+ meters average slip on fault

LAquila earthquake: My, 5.9 - displacements depend on distance,
magnitude, fault geometry
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Deformation cycle: Interseismic (Fairweather Fault)
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The deformation cycle: Interseismic
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Co-Seismic: The 2002 M,,=7.9 Denali Earthquake




C_o-Seismic: The 2002 M,,=7.9 Denali Earthquake

# g X




Co-Seismic: The 2002 M,,=7.9 Denali Earthquake




Co-Seismic: The 2002 M,,=7.9 Denali Earthquake
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Hreinsddttir et al., JGR, 2006
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Co-Seismic: The 2002 M,,=7.9 Denali Earthquake
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Figure 10. Range of reasonable coseismic slip models from the roughest (3 = 2.5 km*m) to the
smoothest (3 =7 km?/m). The axes show easting, northing, and depth in km. TAP, Trans-Alaska pipeline;
DTJ, Denali-Totschunda fault junction. Red star indicates the Denali Fault earthquake epicenter.

Hreinsddttir et al., JGR, 2006
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The deformation Cycle: Post-seismic

Upper plate
Locking

Afterslip

@ Relaxation

Mantle
wedge
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Oceanic mantle Slab

Earthquake cycle = rupture + @ + @ + @

Figure 2 | Three primary processes after a subduction earthquake. (1)
Aseismic afterslip occurs mostly around the rupture zone, (2) the coseismically
stressed mantle undergoes viscoelastic relaxation, and (3) the fault is relocked.
Arrows at the top show the sense of horizontal motion of Earth’s surface, relative
to distant parts of the upper plate, caused by each of these three processes.

Wang et al., 2012, Nature
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The deformation Cycle: Post-seismic

a Sumatra

b Chile
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Figure 3 | GPS- (red) and model-predicted (blue) surface velocities for three
subduction zones that are at different stages of the earthquake cycle. a, At
Sumatra, one year after the M,, = 9.2 earthquake of 2004 (refs 20 and 21)
(epicentre shown by star), all sites move seaward. Shown are ~1-year average
GPS velocities. More recent data show the same pattern®. Coseismic fault slip
(contoured in metres) is based on ref. 56. Longer (~3-years) time series from
the three labelled far-field sites (BNKK, CPN, PHKT)* helped constrain
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afterslip and transient rheology (ref. 48). b, At Chile, four decades after the
M,, = 9.5 earthquake of 1960, coastal and inland sites show opposing motion.
Coseismic slip is from ref. 14. For sources of GPS data, see ref. 17. The
northernmost areas show wholesale landward motion before the 2010 M,, = 8.8
Maule earthquake. ¢, At Cascadia, three centuries after the M,, = 9 earthquake
of 1700, all sites move landward. The model is an updated version of ref. 8. A
more comprehensive GPS compilation shows a similar deformation pattern'®.

Wang et al., 2012, Nature
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The deformation Cycle: Post-seismic

a Sumatra b Chile
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The deformation Cycle — Slow Slip
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Physics of Faults

e stick-slip sliding (seismic)
o 2 sides of interface stuck
together: friction
e slip occurs when friction is
overcome
e slip controlled by dynamic
friction, healing
stable sliding (aseismic):
¢ 2 sides slide continuously
past each other
e slip occurs all the time
o slip controlled by plastic,
f5km ductile or viscous yielding

n.... e transient slip also occurs (slow
slip events)

Eric Calais
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Geodetic data — Slip on a Fault

How to get this?
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Figure 10. Range of reasonable coseismic slip models from the roughest (3 = 2.5 km%m) to the
smoothest (3 = 7 km?/m). The axes show easting, northing, and depth in km. TAP, Trans-Alaska pipeline;
DT]J, Denali-Totschunda fault junction. Red star indicates the Denali Fault earthquake epicenter.

Hreinsddttir et al., JGR, 2006
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Geodetic data — Slip on a Fault

Green's function = displacement due to unit slip on fault patch
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Geodetic site

12 patches, variable slip

Eric Calais
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