ERTH 491-01 / GEOP 572-02
 Geodetic Methods

- Lecture 26: Modeling - Slip Inversion cont'd -

November 16, 2015

Guess The ≈ 8 Processes

ATW2 (ATW2_AKDA_AK2000) NAM08

Processed Daily Position Time Series - Cleaned (Outliers Removed)

$2 / 11$

Solving for Slip

Eric Calais

Solving for Slip

Inversion

-Fixed Fault Model in Elastic Halfspace

With 224 GPS sites and 697 fault tiles solving for dip-slip and strike-slip, what problem are we running into?

Solving for Slip

Inversion

-Fixed Fault Model in Elastic Halfspace

Sigrun Hreinsdottir
With 224 GPS sites and 697 fault tiles solving for dip-slip and strike-slip, what problem are we running into?
Underdetermined system.

Solving for Slip

Inversion

-Fixed Fault Model in Elastic Halfspace

Sigrun Hreinsdottir

- observations at 225 GPS sites: 675 data (if vertical helps)
- 697 fault tiles, ss, ds: 1394 unknowns
- no enough data to constrain number of unknowns
- also often an issue: unphysical oscillatory slip

Regularization / Smoothing

- Idea: Minimize the rate of change of slip with position
- "rate of change of slip" is curvature
- Laplacian:

$$
\nabla^{2}=\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta y^{2}}+\frac{\delta^{2}}{\delta z^{2}}
$$

- Practice: Minimize sum of partial second differentials of slip for each fault patch
- Can be solved using finite-difference method for a function P

$$
\frac{\delta^{2} P(x)}{\delta x^{2}} \approx \frac{P(x-\Delta x)-2 P(x)+P(x-\Delta x)}{\Delta x^{2}}
$$

Regularization / Smoothing

- Our function $P(x)$ is slip s which varies along-strike (x) and down-dip (y)
- For patch i finite difference approximation of Laplacian is (nve = number of vertical elements, nhe = horiztonal):

Eric Calais

$$
I_{i}=\frac{s_{i-n v e}-2 s_{i}+s_{i+n v e}}{\Delta x^{2}}+\frac{s_{i-1}-2 s_{i}+s_{i+1}}{\Delta y^{2}}
$$

Regularization / Smoothing

- In practice, equation:

$$
l_{i}=\frac{s_{i-n v e}-2 s_{i}+s_{i+n v e}}{\Delta x^{2}}+\frac{s_{i-1}-2 s_{i}+s_{i+1}}{\Delta y^{2}}
$$

is written in matrix form, for the along-strike and down-sip components:

- The 2 Laplacian matrices are then added:

$$
L=L_{x}+L_{y}
$$

Regularization / Smoothing

- The original problem was:

$$
[u]=\left[\begin{array}{ll}
G_{s s} & G_{d s}
\end{array}\right]\left[\begin{array}{l}
s_{s s} \\
s_{d s}
\end{array}\right]
$$

- now it becomes:

$$
\left[\begin{array}{l}
u \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cc}
G_{s s} & G_{d s} \\
L & 0 \\
0 & L
\end{array}\right]\left[\begin{array}{l}
s_{s s} \\
s_{d s}
\end{array}\right]
$$

- amount of smoothing can be tuned using scalar smoothing factor κ :

$$
\left[\begin{array}{l}
u \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cc}
G_{s s} & G_{d s} \\
\kappa L & 0 \\
0 & \kappa L
\end{array}\right]\left[\begin{array}{l}
s_{s s} \\
s_{d s}
\end{array}\right]
$$

- $\kappa=0$: no smoothing, $\kappa=1$ maximum smoothing

Regularization / Smoothing

What can you recover? Checker board / Resolution test:

Sigrun Hreinsdottir

Distributed Slip Inversion

This is how you get this:

$M_{0}=6.81 \times 10^{20} \mathrm{Nm}$
$M_{w} 7.89$
Sigrun Hreinsdottir

