Variables and Functions

Jeff Freymueller
September 26, 2011

Topics for Today

A quick review of variables
How MATLAB handles variables
Advanced variable types

— Cell arrays

— Structures (structs)
Functions

— Built-in functions

— Designing your own functions
— Sensible use of functions

Variables Review: name vs. value

e Every variable has a name and a value — don’t
mix up the two.
— The variable is a box in which you can store

something. The name is written on the box, and
the value is what you store inside.

— Some languages have a few restricted words that
cannot/should not be used for variable names,

usually because these are the names of
commands or control structures.
* MATLAB really treats all variable values, even

strings, as arrays.

Variable review: assignment vs.
reference

* Are you putting the value in, or taking it out?

* Assignment is when you store a value in a
variable
—deg2rad = pi/180;

e Reference is when you access the value.

— “pi” above is a reference. It is replaced by the
value of the variable called pi.

— Some languages use a special symbol when you
reference the value of a variable, but MATLAB
does not

Audience Participation

For each statement, identify all variable
assignments and references:

*h = 6.62606896*10"-34;
*h bar = h/(2*pi);

* (b == a row(4))

ec = (a”2 + b"2)70.5;
*J =3+ 1;

Variables in MATLAB

 MATLAB treats all variables as arrays (vectors or
matrices). Program’s roots are in linear algebra.

— Scalars are just O-dimensional arrays (single values)

— Values assighed using=: a row = [1 2 3]
— Values assigned using=: a col = [1; 2; 3]
— You can make an empty array: foo = [];

 Most of the time, you don’t need to worry about
the variable type, MATLAB handles it invisibly.

— But you do have to remember that there is a
difference between a row vector and a column vector.

Matrix, Row Vector, Column Vector

1 0 O]
* A matrix 010
0 0 1]
* A row vector [1 2 3]
»
A column vector i 0
T [1 2 3]2|=1+4+9=14
3
— They are not the same: . - _
1 1 2 3
2[1 2 3]=|2 4 6
3] 3 6 9

Bracketology

MATLAB uses three different kinds of brackets,
parentheses, braces, all meaning different things

[] Square brackets
— Vectors, arrays and matrices are contained inside

() Parentheses

— Access a particular element of an array by putting the
indices inside parentheses

{ } Braces or Curly brackets

— Like parentheses, except for cell arrays

Bracketology

* [] Square brackets
— Vectors, arrays and matrices are contained inside
—a row = [1 2 3]; a col = [1; 2; 31];
— also a col = [1 2 3]1';

* () Parentheses

— Access a particular element of an array by putting the indices
inside parentheses

— What isthe valueof a_row(2)?ofa col(3)?
—a row(3) = 5;
e {}Braces or Curly brackets
— Like parentheses, except for cell arrays
— my cell{l} = ‘Label’;
—my cell{2} = [1 2 3];

Math Operators
TN R AR WA

Basic math operators (+, -, *, /,) operate on arrays.

— *js actually matrix multiplication, / will invert a matrix
— a/bisa*inv(b) whilea\bisinv(a)*b

Element-wise operators (.*, ./, .A, .\) operate on an
element by element basis

—c = a.*bmeansc(i) = a(i)*b(i),forall i

— Why is there no .+ nor .- ??

Order of operators is normal math order. If you are
not sure, use parentheses to be sure.

help ops ordoc ops

Array Expansion

 MATLAB will automatically expand the size of an
array when you assign an element that does not exist
— This is convenient when it is what you meant to do.
— |t causes trouble when you did not mean to do it.
— It can be slow when arrays are big

* Example:a = [1, 4]; a(2,1) =5
— What do you think will happen?

e Example:clear a; a = [1, 4]; ¢ = a
(2,1)
— What do you think will happen?

III

Special “Numbers”

* MATLAB handles complex numbers seamlessly
— 5 + sgrt(-1) evaluatesto 5.0000 + 1.0000i
— If you do not define a variable “i”, MATLAB will use
that symbol for sqgrt(-1).
 Not a Number (NaN) is a very handy “number”

— Use NaN to represent missing values
DO NOT use “9999” for missing values!

— Any arithmetic operation with NaN produces NaN
— The function “isnan” finds all the NaNs in its argument

* idx = isnan(has_a nan)

Array vs. Cell array

* Cell arrays behave a bit differently than
regular arrays.

— Every element of a regular array can hold one
thing of the same type. Not so for cell arrays. Each
element of a cell array is a container that can hold
any one thing.

— Cell arrays are really useful for strings, and also are
returned by some functions that read files.

— You can do numerical operations across regular
arrays, but not cell arrays.

Structures

Suppose you have a set of variables that go together
semantically. A structure (or struct) lets you package
them together, making it easy to keep track of things.

A struct has one or more fields, which are named, and
each can store a value (or vector, or array, or a struct,
or...)

You define a struct by naming its fields and assighing a
value to each (or use [] for an empty value).

Access a field like this: weather.year,
weather.temp(5)

— Orgetfield(weather, “year”)orgetfield
(weather, name) where name is a variable.

>> load st elias

>> st elias

st elias =

name:
type:
unit:
bbox:
timedep:
div_lon:
div_lat:
lonarray:
latarray:
east:
north:
height:

Struct Example 1

The commands “load” and “save” let you store

workspace or variables to disk. In this case,
there is a file st _elias.mat that stores the
saved variable st _elias.

'St. Elias region interpolated grid'

'velocity'
‘cm/yr'

[2x2 double]
[]

0.2500

0.2500

[41x1 double]
[27x1 double]
[27x41 double]
[27x41 double]
[27x4]1 double]

This struct stores a gridded data
set (in this case a model
computation). It has some meta-
data, a bounding box (bbox),
information about the grid, and
then data values.

Struct Example 2

e Let’s suppose you have a data file, and you
need to keep track of the file meta-data as
well as the data values. For example, a SAR
image. Possible fields are:

— amplitude, phase : arrays of data values

— X, Yy : positions of each (georeferenced) pixel
— satellite_name

— track_num, frame_num : identify the image
— More meta-data

Example 2 continued

e Define the structure:

— my image = struct(‘satellite name’, [],
‘track num’, [], ‘frame num’, [], ‘X', []1,

lyl,
[1, ‘amplitude’, [], ‘phase’, [1]);

— This is a set of label, value pairs. [means an empty array. You could

put values here, but be aware that MATLAB won’t always do what you
expect if some values are arrays.

— | put in empty values for a reason — MATLAB’s behavior is predictable
that way.

* Now populate it with values

— my image.satellite name = ‘Envisat’;
— my image.track num = 1745;
* Access the values

— small x values = (my_ image.x < =500);

Struct Example 2

e Suppose you have a data set that has a number of
arrays of the same size. There might also be some
other information.

— For each day of year, you have temperature, pressure and
humidity readings
* What are the fields?
— Year (scalar)
— Day_of year (array)
— temperature, pressure, humidity (arrays)
* |n this case, it makes sense to make an array of structs,
which will allow you to do some numerical operations

on the elements, like finding the minimum, maximum
or mean.

Example 3

* The easy way to make an array of structs is to put all
the numerical values into cell arrays and use these to
define the struct.

— Note: some input routines give you the data in cell arrays
already!

— You'll get an error message if the cell arrays are different
sizes.

e weather = struct(‘year’, 2009, ‘day_of year’, {225, 230,

235}, ‘temp’, {64, 69, 58}, ‘pressure’, {30.1, 30.5, 29.5},
‘humidity’, {0.64, 0.34, 0.88});

* This produces a 3 element array of structs. You can
access the values in different ways:
— weather(2).temp

— median([weather.pressure])

Let’s Explore MATLAB for a while

* Structs 000
“tesookathe — NATLAB
”ti mese rl es” St ru Ct The Language of Technical Computing

— This is an example of
packaging a variety of
related information into
one “container”

— If | want to store multiple
timeseries, | could make a

7.7.0.471 (R2008b)
September 17, 2008

Copyright 1984-2008, The MathWorks, Inc. Protected by

cell array and store each e s e e s i, MATLAR anc Stmuink e regiare

trademarks of The MathWorks, Inc. See www.mathworks.com/itrademarks for a list of
additional trademarks. Other product or brand names may be trademarks or registered

ti m ese ri eS i n O n e trademarks of their respective holders.

element. +) The MathWorks™

Functions

e Whatis a function?

— A set of mathematical operations that take some input
values (“variables”) and produce one or more output
values.

* Remember every value can be a scalar or a vector or matrix

— A little black box of code that takes some inputs and
produces one or more outputs

* Some of the boxes in your flowchart might be implemented
as functions

* Examples of built-in functions: sqrt, isnan, find,
eye, zeros, ones, size, inv

Defining your own MATLAB functions

e Save your function in its own .m file, named for the function

e Start with a function declaration
— function output = my func(inputl, input2)
— function [outl, out2] = two out(inl, in2, 1in3)
— Be sure to give your function a descriptive name!
* End with “return” (not required, but good habit)
* You can use any number of inputs and any number of outputs, as defined in
your code.
— The arguments to the function are passed by value
* ¢ = my func(a, b);
— If you change the values of the input variables inside the function, those changes
are lost when you exit

— Some languages (like fortran) pass arguments by reference, so you can change any
variable passed to a subroutine/function

 Any comment lines immediately after function definition are used by help

A simple function example

Let’s make a “cuberoot” function.
e Create a file called cuberoot.m

function out = cuberoot(in);
out = in"(1/3);
return
e Use the function
— Yy = cuberoot(x);
* What’s going on when you call the function

— MATLAB takes the value of x, and assigns it to the variable
in on the inside of the function

— When the function exits, the value of out is assigned to y

Scope of variables

* The function exists in its own separate little
space. It interacts with its calling routine only
through the arguments it is passed and the values
It returns.

— It can only modify the values it returns, and not the
arguments.

e Variables used inside the function are created
when the function is called, and thrown out when
it is done.

* You can re-use variable names inside a function
that are also used somewhere outside.

More of your own functions

* Aslong as MATLAB knows where to find it,
your function becomes just as much a part of
the language as the built-in functions

— Build up a set of your own useful functions!

 MATLAB will always find functions in the current
directory

* Use addpath to specify other directories where it
should look for your functions

— Assemble small pieces into bigger tools!
* Be sure to use sensible names!

