Beyond the Mouse — A
Short Course on

Programming
7. Unix Tools Il

Ronni Grapenthin

Geophysical Institute, University of Alaska
Fairbanks

October 22, 2009

YoUlL NEVER FINDA

PROGRAMMING LANGUAGE
THAT FREES YOU FROM
THE BURDEN OF
CLARIFYING

YOUR 1DEAS.

\

BUT Z KNOW
WHAT I MEAN!

“The Uncomfortable Truths Well”,
http://xked.com/568 (April 13, 2009)

1/25

Today’s schedule ...

0 Introduction

© Remote access: ssh

e Backup Strategies

©Q Makefiles

e Version control (with subversion)

@ Putting it all together . ..

2/25

Today’s schedule

0 Introduction

3/25

Introduction

Goal for today:
@ go over several book shelves
@ introduce a couple tools: ssh, rsync, make, svn
@ explain how they work by themselves

@ show how you can orchestrate them into a decent project
management suite

Today’s schedule

e Remote access: ssh

5/25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

Your puny
machine

6/25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote

machine

Your puny
machine

THE myserious, cloudy
INTERWEBS

6/25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote

machine

Your puny
machine

X

THE myserious, cloudy
INTERWEBS

6/25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

The Server!

has:
- data
- programs
THE myserious, cloudy (e.g. Matlab)
Your puny ssh INTERWEBS - more memory
machine e - faster CPU
- uncensored WWW

6/25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

The Server!

has:
- data
- programs
THE myserious, cloudy e.g. Matlab
g
Your puny ssh, INTERWEBS - frnore memory
machine rsync, - faster CPU
- uncensored WWW

svn, ...

6/25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

The Server!

(ssh,)
rsync, svn, ... has:
- data
- programs
THE myserious, cloudy e.g. Matlab
g
Your puny ssh, INTERWEBS - frnore memory
machine rsync, - faster CPU
- uncensored WWW

svn, ...

6/25

Remote access: ssh

Command line syntax (see man page!)
ssh [A LOT OF OPTIONS] [user@]hostname [command]

7/25

Remote access: ssh

Command line syntax (see man page!)
ssh [A LOT OF OPTIONS] [user@]hostname [command]

Example — Logging into GPS webserver

> ssh —-2Y ronni@fairweather.gps.alaska.edu
Opens a new session on host fairweather.gps.alaska.edu for
user ronni using protocol SSH 2 with trusted X11 forwarding.

Remote access: ssh

Command line syntax (see man page!)
ssh [A LOT OF OPTIONS] [user@]hostname [command]

Example — Logging into GPS webserver

> ssh —-2Y ronni@fairweather.gps.alaska.edu
Opens a new session on host fairweather.gps.alaska.edu for
user ronni using protocol SSH 2 with trusted X11 forwarding.

| A\

Why/when would you need that?
@ Whenever you don’t want to walk to the machine.
@ Can’t access data locally.
@ You are actually, physically, and really on that machine (isn’t the
Internet great?)
@ Many tools (svn, rsync, ...) offer to use ssh tunnels (they do their
job after an SSH session has been established).

Today’s schedule

e Backup Strategies

8/25

What is a backup?

Backup, backup!
@ Creating a copy of something that must never get lost.
@ data, results, settings, figures, writing (YOUR THESIS), ...

@ ...because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

What is a backup?

Backup, backup!

@ Creating a copy of something that must never get lost.
@ data, results, settings, figures, writing (YOUR THESIS), ...

@ ...because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

v

General strategies

@ Episodically create a physical copy on a medium different from
your hard drive (usb drive).

\

What is a backup?

Backup, backup!

@ Creating a copy of something that must never get lost.
@ data, results, settings, figures, writing (YOUR THESIS), ...

@ ...because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

v

General strategies

@ Episodically create a physical copy on a medium different from
your hard drive (usb drive).

@ OR use one of the gazillion tools that help you with this.

\

What is a backup?

Backup, backup!

@ Creating a copy of something that must never get lost.
@ data, results, settings, figures, writing (YOUR THESIS), ...

@ ...because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

v

General strategies

@ Episodically create a physical copy on a medium different from
your hard drive (usb drive).

@ OR use one of the gazillion tools that help you with this.
@ We’ll concentrate on rsync

\

What is a backup?

Backup, backup!

@ Creating a copy of something that must never get lost.
@ data, results, settings, figures, writing (YOUR THESIS), ...

@ ...because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

v

General strategies

@ Episodically create a physical copy on a medium different from
your hard drive (usb drive).

@ OR use one of the gazillion tools that help you with this.
@ We’ll concentrate on rsync

@ Whatever method you choose, every now and then make sure the
files can indeed be recovered!

v

9/25

rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local: rsync [OPTION...] SRC... [DEST]

Access via remote shell:
Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST:DEST

Access via rsync daemon:
Pull: rsync [OPTION...] [USER@]HOST::SRC... [DEST]
rsync [OPTION...] rsync ://[USER@]HOST[:PORT]/SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST::DEST
rsync [OPTION...] SRC... rsync ://[USER@]HOST|[:PORT]/DEST

Usages with just one SRC arg and no DEST arg will list the source
files instead of copying.

10/25

rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local: rsync [OPTION...] SRC... [DEST]

Access via remote shell:
Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST:DEST

Access via rsync daemon:
Pull: rsync [OPTION...] [USER@]HOST::SRC... [DEST]
rsync [OPTION...] rsync ://[USER@]HOST[:PORT]/SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST::DEST
rsync [OPTION...] SRC... rsync ://[USER@]HOST|[:PORT]/DEST

Usages with just one SRC arg and no DEST arg will list the source
files instead of copying.

@ If any of the files already exist on the remote system then rsync
sends only the differences.

10/25

rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local: rsync [OPTION...] SRC... [DEST]

Access via remote shell:
Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST:DEST

Access via rsync daemon:
Pull: rsync [OPTION...
rsync [OPTION..

Push: rsync [OPTION...
rsync [OPTION. ..

[USER@]HOST: :SRC. .. [DEST]
rsync ://[USER@]HOST[:PORT]/SRC... [DEST]
SRC... [USER@]HOST::DEST
SRC... rsync ://[USER@]HOST[:PORT]/DEST

Usages with just one SRC arg and no DEST arg will list the source
files instead of copying.

@ If any of the files already exist on the remote system then rsync
sends only the differences.

@ -avz transfer in “archive” mode: ensures that symbolic links,
permissions, etc. are preserved. Compression is used to reduce
the size of data portions.

10/25

rsync: example

#1/bin/csh

takes folder in ~/ww that’'s to be updated on fairweather as
argument

if ($#argv < 1) then
echo "Usage: $0 <folder in ~/www>"
exit

endif

rsync —avz —delete ~/www/$1 ronni@fairweather.gps.alaska.edu:/export/ftpweb/htdocs

11/25

rsync: example

#1/bin/csh

takes folder in ~/ww that’'s to be updated on fairweather as
argument

if ($#argv < 1) then
echo "Usage: $0 <folder in ~/www>"
exit

endif

rsync —avz —delete ~/www/$1 ronni@fairweather.gps.alaska.edu:/export/ftpweb/htdocs

v
#1/bin/csh
#pulling selected data for a project from a server
rsync —avz —include="%/" —include="BEZx" —include="BZ+" —exclude="x" \
ronni@fairweather.gps.alaska.edu:/gps/data/NEAsia2.5 timeseries/ ./data
v

11/25

Today’s schedule

Q Makefiles

12/25

@ make is a program that (usually) lives in /usr/bin

@ determines which parts of a project need to be updated
depending on those that changed

@ make does that according to rules defined in a Makefile

@ has its roots in the programming world, but can be used for

anything (link coffee machine to USB port, write rules, make
coffee)

13/25

Make Rules

target ... : prerequisites
<TAB> command 1
<TAB> command 2

<TAB> command N

14/25

make my day!

Make Rules

target ... : prerequisites
<TAB> command 1

<TAB> command 2

<TAB> command N

@ target: name of a file to be created or an action to be carried out
(e.9. update)

@ prerequisite: a file/target necessary to create the target, often
there are many prerequisites, is optional.

@ command: action that make carries out. Tabulator, tab, <TAB>,
whatever this one character MUST be at the beginning of each
command line

14/25

make my day!

Make Example

simple Makefile that shows which files in
directory tree have changed since they 've
last been displayed

call: make —f Makefile—delta <rule>

1st rule: target ’'changes’ depends on all the files
that contain a dot in the current directory

1. command: display all the prerequisites that changed since
last display, internal variable $? contains this list,
display each on separate line using BASH-shell for—loop
2. command: touch (i.e. update) empty file ’changes’, so that make
knows about the last time this rule has been carried
out
the '@ says that the command should not be echoed in the shell

SO R R R R R R R R R R R R

changes: x.x
@for i in $?; do echo $$i; done
@touch changes

2nd rule: remove file ’changes’, Implicit understanding of this rule:
Reset everything to the state before make was executed the first time
no '@ — see the difference
clean:

rm changes

15/25

make my day even better!

Make can do variables (and a lot more), too:

simple Makefile demonstrating the use of variables
call: make —f Makefile—vars <rule>

Defining a variable
FILELIST := $(shell find ./ —type f)

Accessing a variable ... as a list and then entry by entry
all:

@echo

@echo files:

@echo $(FILELIST)

@echo

@echo files:

@for i in $(FILELIST); do echo $$i; done

16/25

Today’s schedule

e Version control (with subversion)

17/25

Version control (with subversion)

What is ‘version control’?

“Version control is the art of managing changes to information.”
(svnbook)

@ a fileserver that remembers every change ever written to it.

@ traditionally used by programmers: change little bits of code on
one day only to undo it the next day.

@ well, that’s just what we do with papers, theses, ...

18/25

Version control (with subversion)

What is ‘version control’?

“Version control is the art of managing changes to information.”
(svnbook)

@ a fileserver that remembers every change ever written to it.

@ traditionally used by programmers: change little bits of code on
one day only to undo it the next day.

@ well, that’s just what we do with papers, theses, ...

What is ‘version control’ NOT?

@ NOT a backup: creates value (history, log entries, .. .)
@ Backup your repository every now and then.

18/25

Version control (with subversion)

What is ‘version control’?

“Version control is the art of managing changes to information.”
(svnbook)

@ a fileserver that remembers every change ever written to it.

@ traditionally used by programmers: change little bits of code on
one day only to undo it the next day.

@ well, that’s just what we do with papers, theses, ...
What is ‘version control’ NOT?
@ NOT a backup: creates value (history, log entries, .. .)
@ Backup your repository every now and then.
What can be under version control?

Depends on tool: CVS — only text files, subversion — text and binary
files

writes

REPOSITORY
(data central)

remote or local,
memorizes changes
on write

reads recent or
older version

Client 1

Client 2

$> svnadmin

$> svn

19/25

Creating/managing a repository: svnadmin, svn

svnadmin Command line syntax

general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS
& OPTIONS ...]

Type ’svnadmin help <subcommand>’ for help on a
specific subcommand.

subcommands: many! Type ’ svnadmin help’ to see them

20/25

Creating/managing a repository: svnadmin, svn

svnadmin Command line syntax

general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS
& OPTIONS ...]
Type ’svnadmin help <subcommand>’ for help on a

specific subcommand.
subcommands: many! Type ’ svnadmin help’ to see them

svn Command line syntax

usage: svn <subcommand> [options] [args]
Type ’svn help <subcommand>’ for help on a specific

subcommand.
subcommands: even more! Type ' svn help’ to see them

20/25

Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)
$> svnadmin create —-fs-type fsfs S$PWD/repos

21/25

Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)

S>

svnadmin create —-fs-type fsfs S$PWD/repos

Preparing your project (repository layout):
S>
S>
S>
$>

mkdir my_project

cd my_project

mkdir trunk branches tags
mv <project—-files> trunk

21/25

Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)
$> svnadmin create —-fs-type fsfs S$PWD/repos

Preparing your project (repository layout):
$> mkdir my_project

$> cd my_project

$> mkdir trunk branches tags

$> mv <project-files> trunk

Putting your stuff under version control

$> svn import my_project
file:///$PWD/repos/my_project

| A

21/25

Creating/managing a repository: svnadmin, svn

Your work is now in the repository, get your local copy!
$> mv my_project my_project_old

$> svn checkout file:///S$PWD/repos/my_project/trunk
my_project

22/25

Creating/managing a repository: svnadmin, svn

Your work is now in the repository, get your local copy!

$> mv my_project my_project_old
$> svn checkout file:///S$PWD/repos/my_project/trunk
my_project

Work cycle

$> svn update
edit files locally
$> svn commit

| A\

22/25

Creating/managing a repository: svnadmin, svn

Log of a session (local repository):

eolan:~/../07 _unix_tools2> svnadmin create —fs—type fsfs $PWD/repos

eolan:~/../07 _unix_tools2> Is repos

conf db format hooks locks README.txt

eolan:~/../07 _unix_tools2> mkdir BTM

eolan:~/../07 _unix_tools2> mkdir BTM/trunk BTM/tags BTM/branches

eolan:~/../07 _unix_tools2> cp ../../beyond_the _mouse/x ./BTM/trunk/

eolan:~/../07 _unix_tools2> |s BTM/trunk/

01_thinking_programs.aux 02_fundamentals . pdf

eolan:~/../07 _unix_tools2> svn import BTM file : ///$PWD/repos/B'I'lVI—m “initial import"
Adding BTM/ trunk

Committed revision 1.

eolan:~/../07 _unix_tools2> mv BTM BTM_old

eolan:~/../07 _unix_tools2> svn checkout file :///$PWD/repos/BTM/trunk BTM
A BTM/04 _fundamentals.snm

Chécked out revision 3.

23/25

Creating/managing a repository: svnadmin, svn

Log of a session (local repository):

eolan:~/../07 _unix_tools2> svnadmin create —fs—type fsfs $PWD/repos

eolan:~/../07 _unix_tools2> Is repos

conf db format hooks locks README.txt

eolan:~/../07 _unix_tools2> mkdir BTM

eolan:~/../07 _unix_tools2> mkdir BTM/trunk BTM/tags BTM/branches

eolan:~/../07 _unix_tools2> cp ../../beyond_the _mouse/x ./BTM/trunk/

eolan:~/../07 _unix_tools2> |s BTM/trunk/

01_thinking_programs.aux 02_fundamentals . pdf

eolan:~/../07 _unix_tools2> svn import BTM file : ///$PWD/repos/B'I'lVI—m “initial import"
Adding BTM/ trunk

Committed revision 1.

eolan:~/../07 _unix_tools2> mv BTM BTM_old

eolan:~/../07 _unix_tools2> svn checkout file :///$PWD/repos/BTM/trunk BTM
A BTM/04 _fundamentals.snm

CHecked out revision 3.

@ remote repositoy: ssh into server, use svnadmin as shown above

@ s import my_project svn+ssh://user@server/repos/my_project

@ sun checkout svn+ssh://user@server/repos/my_project/trunk my_project

23/25

Today’s schedule

@ Putting it all together . ..

24/25

Putting it all together ... (assuming we're the only ones

working on a project)

@ create directory for all your projects: mkdir /projects

@ create a new project: new_project.csh <project-name>
@ coming into the office: make start-day

@ do your work: make all, every now and then

@ finish your day: make end-day

25/25

	Introduction
	Remote access: ssh
	Backup Strategies
	Makefiles
	Version control (with subversion)
	Putting it all together …

