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Today’s schedule ...

0 Introduction

© Remote access: ssh

e Backup Strategies

©Q Makefiles

e Version control (with subversion)

@ Putting it all together . ..
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Introduction

Goal for today:
@ go over several book shelves
@ introduce a couple tools: ssh, rsync, make, svn
@ explain how they work by themselves

@ show how you can orchestrate them into a decent project
management suite
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Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

Your puny
machine
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Remote access: ssh

Command line syntax (see man page!)
ssh [A LOT OF OPTIONS] [user@]hostname [command]
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Remote access: ssh

Command line syntax (see man page!)
ssh [A LOT OF OPTIONS] [user@]hostname [command]

Example — Logging into GPS webserver

> ssh —-2Y ronni@fairweather.gps.alaska.edu
Opens a new session on host fairweather.gps.alaska.edu for
user ronni using protocol SSH 2 with trusted X11 forwarding.
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Why/when would you need that?
@ Whenever you don’t want to walk to the machine.
@ Can’t access data locally.
@ You are actually, physically, and really on that machine (isn’t the
Internet great?)
@ Many tools (svn, rsync, ...) offer to use ssh tunnels (they do their
job after an SSH session has been established).
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What is a backup?

Backup, backup!
@ Creating a copy of something that must never get lost.
@ data, results, settings, figures, writing (YOUR THESIS), ...

@ ...because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.
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What is a backup?

Backup, backup!

@ Creating a copy of something that must never get lost.
@ data, results, settings, figures, writing (YOUR THESIS), ...

@ ...because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

v

General strategies

@ Episodically create a physical copy on a medium different from
your hard drive (usb drive).

@ OR use one of the gazillion tools that help you with this.
@ We’ll concentrate on rsync

@ Whatever method you choose, every now and then make sure the
files can indeed be recovered!

v
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rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local: rsync [OPTION...] SRC... [DEST]

Access via remote shell:
Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST:DEST

Access via rsync daemon:
Pull: rsync [OPTION...] [USER@]HOST::SRC... [DEST]
rsync [OPTION...] rsync ://[USER@]HOST[:PORT]/SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST::DEST
rsync [OPTION...] SRC... rsync ://[USER@]HOST|[:PORT]/DEST

Usages with just one SRC arg and no DEST arg will list the source
files instead of copying.
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rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local: rsync [OPTION...] SRC... [DEST]

Access via remote shell:
Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST:DEST

Access via rsync daemon:
Pull: rsync [OPTION...
rsync [OPTION..

Push: rsync [OPTION...
rsync [OPTION. ..

[USER@]HOST: :SRC. .. [DEST]
rsync ://[USER@]HOST[:PORT]/SRC... [DEST]
SRC... [USER@]HOST::DEST
SRC... rsync ://[USER@]HOST[:PORT]/DEST

Usages with just one SRC arg and no DEST arg will list the source
files instead of copying.

@ If any of the files already exist on the remote system then rsync
sends only the differences.

@ -avz transfer in “archive” mode: ensures that symbolic links,
permissions, etc. are preserved. Compression is used to reduce
the size of data portions.
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rsync: example

#1/bin/csh

# takes folder in ~/ww that’'s to be updated on fairweather as
# argument

if ($#argv < 1) then
echo "Usage: $0 <folder in ~/www>"
exit

endif

rsync —avz —delete ~/www/$1 ronni@fairweather.gps.alaska.edu:/export/ftpweb/htdocs
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rsync: example

#1/bin/csh

# takes folder in ~/ww that’'s to be updated on fairweather as
# argument

if ($#argv < 1) then
echo "Usage: $0 <folder in ~/www>"
exit

endif

rsync —avz —delete ~/www/$1 ronni@fairweather.gps.alaska.edu:/export/ftpweb/htdocs

v
#1/bin/csh
#pulling selected data for a project from a server
rsync —avz —include="%/" —include="BEZx" —include="BZ+" —exclude="x" \
ronni@fairweather.gps.alaska.edu:/gps/data/NEAsia2.5 timeseries/ ./data
v
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Today’s schedule

Q Makefiles
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@ make is a program that (usually) lives in /usr/bin

@ determines which parts of a project need to be updated
depending on those that changed

@ make does that according to rules defined in a Makefile

@ has its roots in the programming world, but can be used for

anything (link coffee machine to USB port, write rules, make
coffee)
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Make Rules

target ... : prerequisites
<TAB> command 1
<TAB> command 2

<TAB> command N
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make my day!

Make Rules

target ... : prerequisites
<TAB> command 1

<TAB> command 2

<TAB> command N

@ target: name of a file to be created or an action to be carried out
(e.9. update)

@ prerequisite: a file/target necessary to create the target, often
there are many prerequisites, is optional.

@ command: action that make carries out. Tabulator, tab, <TAB>,
whatever this one character MUST be at the beginning of each
command line
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make my day!

Make Example

simple Makefile that shows which files in
directory tree have changed since they 've
last been displayed

call: make —f Makefile—delta <rule>

1st rule: target ’'changes’ depends on all the files
that contain a dot in the current directory

1. command: display all the prerequisites that changed since
last display, internal variable $? contains this list,
display each on separate line using BASH-shell for—loop
2. command: touch (i.e. update) empty file ’changes’, so that make
knows about the last time this rule has been carried
out
the '@ says that the command should not be echoed in the shell

SO R R R R R R R R R R R R

changes: x.x
@for i in $?; do echo $$i; done
@touch changes

# 2nd rule: remove file ’changes’, Implicit understanding of this rule:
# Reset everything to the state before make was executed the first time
# no '@ — see the difference
clean:

rm changes
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make my day even better!

Make can do variables (and a lot more), too:

# simple Makefile demonstrating the use of variables
# call: make —f Makefile—vars <rule>

# Defining a variable
FILELIST := $(shell find ./ —type f)

# Accessing a variable ... as a list and then entry by entry
all:

@echo

@echo files:

@echo $(FILELIST)

@echo

@echo files:

@for i in $(FILELIST); do echo $$i; done
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Today’s schedule

e Version control (with subversion)
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Version control (with subversion)

What is ‘version control’?

“Version control is the art of managing changes to information.”
(svnbook)

@ a fileserver that remembers every change ever written to it.

@ traditionally used by programmers: change little bits of code on
one day only to undo it the next day.

@ well, that’s just what we do with papers, theses, ...
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Version control (with subversion)

What is ‘version control’?

“Version control is the art of managing changes to information.”
(svnbook)

@ a fileserver that remembers every change ever written to it.

@ traditionally used by programmers: change little bits of code on
one day only to undo it the next day.

@ well, that’s just what we do with papers, theses, ...
What is ‘version control’ NOT?
@ NOT a backup: creates value (history, log entries, .. .)
@ Backup your repository every now and then.
What can be under version control?

Depends on tool: CVS — only text files, subversion — text and binary
files




writes

REPOSITORY
(data central)

remote or local,
memorizes changes
on write

reads recent or
older version

Client 1

Client 2

$> svnadmin

$> svn
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Creating/managing a repository: svnadmin, svn

svnadmin Command line syntax

general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS
& OPTIONS ...]

Type ’svnadmin help <subcommand>’ for help on a
specific subcommand.

subcommands: many! Type ’ svnadmin help’ to see them
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Creating/managing a repository: svnadmin, svn

svnadmin Command line syntax

general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS
& OPTIONS ...]
Type ’svnadmin help <subcommand>’ for help on a

specific subcommand.
subcommands: many! Type ’ svnadmin help’ to see them

svn Command line syntax

usage: svn <subcommand> [options] [args]
Type ’svn help <subcommand>’ for help on a specific

subcommand.
subcommands: even more! Type ' svn help’ to see them
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Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)
$> svnadmin create —-fs-type fsfs S$PWD/repos
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Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)

S>

svnadmin create —-fs-type fsfs S$PWD/repos

Preparing your project (repository layout):
S>
S>
S>
$>

mkdir my_project

cd my_project

mkdir trunk branches tags
mv <project—-files> trunk
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Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)
$> svnadmin create —-fs-type fsfs S$PWD/repos

Preparing your project (repository layout):
$> mkdir my_project

$> cd my_project

$> mkdir trunk branches tags

$> mv <project-files> trunk

Putting your stuff under version control

$> svn import my_project
file:///$PWD/repos/my_project

| A
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Creating/managing a repository: svnadmin, svn

Your work is now in the repository, get your local copy!
$> mv my_project my_project_old

$> svn checkout file:///S$PWD/repos/my_project/trunk
my_project
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Creating/managing a repository: svnadmin, svn

Your work is now in the repository, get your local copy!

$> mv my_project my_project_old
$> svn checkout file:///S$PWD/repos/my_project/trunk
my_project

Work cycle

$> svn update
edit files locally
$> svn commit

| A\
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Creating/managing a repository: svnadmin, svn

Log of a session (local repository):

eolan:~/../07 _unix_tools2> svnadmin create —fs—type fsfs $PWD/repos

eolan:~/../07 _unix_tools2> Is repos

conf db format hooks locks README.txt

eolan:~/../07 _unix_tools2> mkdir BTM

eolan:~/../07 _unix_tools2> mkdir BTM/trunk BTM/tags BTM/branches

eolan:~/../07 _unix_tools2> cp ../../beyond_the _mouse/x ./BTM/trunk/

eolan:~/../07 _unix_tools2> |s BTM/trunk/

01_thinking_programs.aux 02_fundamentals . pdf

eolan:~/../07 _unix_tools2> svn import BTM file : ///$PWD/repos/B'I'lVI—m “initial import"
Adding BTM/ trunk

Committed revision 1.

eolan:~/../07 _unix_tools2> mv BTM BTM_old

eolan:~/../07 _unix_tools2> svn checkout file :///$PWD/repos/BTM/trunk BTM
A BTM/04 _fundamentals.snm

Chécked out revision 3.
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Creating/managing a repository: svnadmin, svn

Log of a session (local repository):

eolan:~/../07 _unix_tools2> svnadmin create —fs—type fsfs $PWD/repos

eolan:~/../07 _unix_tools2> Is repos

conf db format hooks locks README.txt

eolan:~/../07 _unix_tools2> mkdir BTM

eolan:~/../07 _unix_tools2> mkdir BTM/trunk BTM/tags BTM/branches

eolan:~/../07 _unix_tools2> cp ../../beyond_the _mouse/x ./BTM/trunk/

eolan:~/../07 _unix_tools2> |s BTM/trunk/

01_thinking_programs.aux 02_fundamentals . pdf

eolan:~/../07 _unix_tools2> svn import BTM file : ///$PWD/repos/B'I'lVI—m “initial import"
Adding BTM/ trunk

Committed revision 1.

eolan:~/../07 _unix_tools2> mv BTM BTM_old

eolan:~/../07 _unix_tools2> svn checkout file :///$PWD/repos/BTM/trunk BTM
A BTM/04 _fundamentals.snm

CHecked out revision 3.

@ remote repositoy: ssh into server, use svnadmin as shown above

@ s import my_project svn+ssh://user@server/repos/my_project

@ sun checkout svn+ssh://user@server/repos/my_project/trunk my_project
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Today’s schedule

@ Putting it all together . ..
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Putting it all together ... (assuming we're the only ones

working on a project)

@ create directory for all your projects: mkdir /projects

@ create a new project: new_project.csh <project-name>
@ coming into the office: make start-day

@ do your work: make all, every now and then

@ finish your day: make end-day
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