
Beyond the Mouse – A
Short Course on

Programming
7. Unix Tools II

Ronni Grapenthin

Geophysical Institute, University of Alaska
Fairbanks

October 22, 2009
“The Uncomfortable Truths Well”,

http://xkcd.com/568 (April 13, 2009)

1 / 25

Today’s schedule . . .

1 Introduction

2 Remote access: ssh

3 Backup Strategies

4 Makefiles

5 Version control (with subversion)

6 Putting it all together . . .

2 / 25

Today’s schedule

1 Introduction

2 Remote access: ssh

3 Backup Strategies

4 Makefiles

5 Version control (with subversion)

6 Putting it all together . . .

3 / 25

Introduction

Goal for today:
go over several book shelves
introduce a couple tools: ssh, rsync, make, svn
explain how they work by themselves
show how you can orchestrate them into a decent project
management suite

4 / 25

Today’s schedule

1 Introduction

2 Remote access: ssh

3 Backup Strategies

4 Makefiles

5 Version control (with subversion)

6 Putting it all together . . .

5 / 25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

THE myserious, cloudy
INTERWEBSYour puny

machine

The Server !

has:
- data
- programs
 (e.g. Matlab)
- more memory
- faster CPU
- uncensored WWW

ssh,
rsync,
svn, ...

6 / 25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

THE myserious, cloudy
INTERWEBSYour puny

machine

The Server !

has:
- data
- programs
 (e.g. Matlab)
- more memory
- faster CPU
- uncensored WWW

6 / 25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

THE myserious, cloudy
INTERWEBSYour puny

machine

The Server !

has:
- data
- programs
 (e.g. Matlab)
- more memory
- faster CPU
- uncensored WWW

ssh,
rsync,
svn, ...

6 / 25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

THE myserious, cloudy
INTERWEBSYour puny

machine

The Server !

has:
- data
- programs
 (e.g. Matlab)
- more memory
- faster CPU
- uncensored WWW

ssh,
rsync,
svn, ...

6 / 25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

THE myserious, cloudy
INTERWEBSYour puny

machine

The Server !

has:
- data
- programs
 (e.g. Matlab)
- more memory
- faster CPU
- uncensored WWW

ssh,
rsync,
svn, ...

6 / 25

Remote access: ssh

ssh (secure shell): log into and execute commands on remote
machine

THE myserious, cloudy
INTERWEBSYour puny

machine

The Server !

has:
- data
- programs
 (e.g. Matlab)
- more memory
- faster CPU
- uncensored WWW

ssh,
rsync,
svn, ...

(ssh,)
rsync, svn, ...

6 / 25

Remote access: ssh

Command line syntax (see man page!)
ssh [A LOT OF OPTIONS] [user@]hostname [command]

Example – Logging into GPS webserver
> ssh -2Y ronni@fairweather.gps.alaska.edu
Opens a new session on host fairweather.gps.alaska.edu for
user ronni using protocol SSH 2 with trusted X11 forwarding.

Why/when would you need that?
Whenever you don’t want to walk to the machine.
Can’t access data locally.
You are actually, physically, and really on that machine (isn’t the
Internet great?)
Many tools (svn, rsync, ...) offer to use ssh tunnels (they do their
job after an SSH session has been established).

7 / 25

Remote access: ssh

Command line syntax (see man page!)
ssh [A LOT OF OPTIONS] [user@]hostname [command]

Example – Logging into GPS webserver
> ssh -2Y ronni@fairweather.gps.alaska.edu
Opens a new session on host fairweather.gps.alaska.edu for
user ronni using protocol SSH 2 with trusted X11 forwarding.

Why/when would you need that?
Whenever you don’t want to walk to the machine.
Can’t access data locally.
You are actually, physically, and really on that machine (isn’t the
Internet great?)
Many tools (svn, rsync, ...) offer to use ssh tunnels (they do their
job after an SSH session has been established).

7 / 25

Remote access: ssh

Command line syntax (see man page!)
ssh [A LOT OF OPTIONS] [user@]hostname [command]

Example – Logging into GPS webserver
> ssh -2Y ronni@fairweather.gps.alaska.edu
Opens a new session on host fairweather.gps.alaska.edu for
user ronni using protocol SSH 2 with trusted X11 forwarding.

Why/when would you need that?
Whenever you don’t want to walk to the machine.
Can’t access data locally.
You are actually, physically, and really on that machine (isn’t the
Internet great?)
Many tools (svn, rsync, ...) offer to use ssh tunnels (they do their
job after an SSH session has been established).

7 / 25

Today’s schedule

1 Introduction

2 Remote access: ssh

3 Backup Strategies

4 Makefiles

5 Version control (with subversion)

6 Putting it all together . . .

8 / 25

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

General strategies

Episodically create a physical copy on a medium different from
your hard drive (usb drive).
OR use one of the gazillion tools that help you with this.
We’ll concentrate on rsync

Whatever method you choose, every now and then make sure the
files can indeed be recovered!

9 / 25

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

General strategies
Episodically create a physical copy on a medium different from
your hard drive (usb drive).

OR use one of the gazillion tools that help you with this.
We’ll concentrate on rsync

Whatever method you choose, every now and then make sure the
files can indeed be recovered!

9 / 25

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

General strategies
Episodically create a physical copy on a medium different from
your hard drive (usb drive).
OR use one of the gazillion tools that help you with this.

We’ll concentrate on rsync

Whatever method you choose, every now and then make sure the
files can indeed be recovered!

9 / 25

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

General strategies
Episodically create a physical copy on a medium different from
your hard drive (usb drive).
OR use one of the gazillion tools that help you with this.
We’ll concentrate on rsync

Whatever method you choose, every now and then make sure the
files can indeed be recovered!

9 / 25

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, fires burn
down houses, you get the idea.

General strategies
Episodically create a physical copy on a medium different from
your hard drive (usb drive).
OR use one of the gazillion tools that help you with this.
We’ll concentrate on rsync

Whatever method you choose, every now and then make sure the
files can indeed be recovered!

9 / 25

rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local : rsync [OPTION . . .] SRC . . . [DEST]

Access v ia remote s h e l l :
P u l l : rsync [OPTION . . .] [USER@]HOST:SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST:DEST

Access v ia rsync daemon :
P u l l : rsync [OPTION . . .] [USER@]HOST: :SRC . . . [DEST]

rsync [OPTION . . .] rsync : / / [USER@]HOST[:PORT] /SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST: : DEST

rsync [OPTION . . .] SRC . . . rsync : / / [USER@]HOST[:PORT] / DEST

Usages wi th j u s t one SRC arg and no DEST arg w i l l l i s t the source
f i l e s ins tead of copying .

If any of the files already exist on the remote system then rsync
sends only the differences.
-avz transfer in “archive” mode: ensures that symbolic links,
permissions, etc. are preserved. Compression is used to reduce
the size of data portions.

10 / 25

rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local : rsync [OPTION . . .] SRC . . . [DEST]

Access v ia remote s h e l l :
P u l l : rsync [OPTION . . .] [USER@]HOST:SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST:DEST

Access v ia rsync daemon :
P u l l : rsync [OPTION . . .] [USER@]HOST: :SRC . . . [DEST]

rsync [OPTION . . .] rsync : / / [USER@]HOST[:PORT] /SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST: : DEST

rsync [OPTION . . .] SRC . . . rsync : / / [USER@]HOST[:PORT] / DEST

Usages wi th j u s t one SRC arg and no DEST arg w i l l l i s t the source
f i l e s ins tead of copying .

If any of the files already exist on the remote system then rsync
sends only the differences.

-avz transfer in “archive” mode: ensures that symbolic links,
permissions, etc. are preserved. Compression is used to reduce
the size of data portions.

10 / 25

rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local : rsync [OPTION . . .] SRC . . . [DEST]

Access v ia remote s h e l l :
P u l l : rsync [OPTION . . .] [USER@]HOST:SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST:DEST

Access v ia rsync daemon :
P u l l : rsync [OPTION . . .] [USER@]HOST: :SRC . . . [DEST]

rsync [OPTION . . .] rsync : / / [USER@]HOST[:PORT] /SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST: : DEST

rsync [OPTION . . .] SRC . . . rsync : / / [USER@]HOST[:PORT] / DEST

Usages wi th j u s t one SRC arg and no DEST arg w i l l l i s t the source
f i l e s ins tead of copying .

If any of the files already exist on the remote system then rsync
sends only the differences.
-avz transfer in “archive” mode: ensures that symbolic links,
permissions, etc. are preserved. Compression is used to reduce
the size of data portions.

10 / 25

rsync: example

! / b in / csh
takes f o l d e r i n ~/www that ’ s to be updated on fa i rwea the r as
argument

i f ($#argv < 1) then
echo " Usage : $0 < f o l d e r i n ~/www>"
ex i t

end i f

rsync −avz −−de le te ~/www/ $1 ronni@fa i rweather . gps . alaska . edu : / export / f tpweb / htdocs

! / b in / csh

p u l l i n g se lec ted data f o r a p r o j e c t from a server
rsync −avz −−i nc lude=" ∗ / " −−i nc lude="BEZ∗" −−i nc lude="BZ∗" −−exclude="∗" \

ronni@fa i rweather . gps . alaska . edu : / gps / data / NEAsia2 .5 _ t imeser ies / . / data

11 / 25

rsync: example

! / b in / csh
takes f o l d e r i n ~/www that ’ s to be updated on fa i rwea the r as
argument

i f ($#argv < 1) then
echo " Usage : $0 < f o l d e r i n ~/www>"
ex i t

end i f

rsync −avz −−de le te ~/www/ $1 ronni@fa i rweather . gps . alaska . edu : / export / f tpweb / htdocs

! / b in / csh

p u l l i n g se lec ted data f o r a p r o j e c t from a server
rsync −avz −−i nc lude=" ∗ / " −−i nc lude="BEZ∗" −−i nc lude="BZ∗" −−exclude="∗" \

ronni@fa i rweather . gps . alaska . edu : / gps / data / NEAsia2 .5 _ t imeser ies / . / data

11 / 25

Today’s schedule

1 Introduction

2 Remote access: ssh

3 Backup Strategies

4 Makefiles

5 Version control (with subversion)

6 Putting it all together . . .

12 / 25

make my day!

make is a program that (usually) lives in /usr/bin

determines which parts of a project need to be updated
depending on those that changed
make does that according to rules defined in a Makefile

has its roots in the programming world, but can be used for
anything (link coffee machine to USB port, write rules, make
coffee)

13 / 25

make my day!

Make Rules
target ... : prerequisites ...
<TAB> command 1
<TAB> command 2
...
<TAB> command N

target: name of a file to be created or an action to be carried out
(e.g. update)
prerequisite: a file/target necessary to create the target, often
there are many prerequisites, is optional.
command: action that make carries out. Tabulator, tab, <TAB>,
whatever this one character MUST be at the beginning of each
command line

14 / 25

make my day!

Make Rules
target ... : prerequisites ...
<TAB> command 1
<TAB> command 2
...
<TAB> command N

target: name of a file to be created or an action to be carried out
(e.g. update)
prerequisite: a file/target necessary to create the target, often
there are many prerequisites, is optional.
command: action that make carries out. Tabulator, tab, <TAB>,
whatever this one character MUST be at the beginning of each
command line

14 / 25

make my day!

Make Example

simple Makef i le t h a t shows which f i l e s i n
d i r e c t o r y t ree have changed since they ’ ve
l a s t been d isp layed
c a l l : make −f Makef i le−de l t a <ru le >

1 s t r u l e : t a r g e t ’ changes ’ depends on a l l the f i l e s
t h a t con ta in a dot i n the cu r ren t d i r e c t o r y
#
1. command : d i sp lay a l l the p r e r e q u i s i t e s t h a t changed since
l a s t d isp lay , i n t e r n a l v a r i a b l e $? conta ins t h i s l i s t ,
d i sp lay each on separate l i n e using BASH−s h e l l f o r−loop
2. command : touch (i . e . update) empty f i l e ’ changes ’ , so t h a t make
knows about the l a s t t ime t h i s r u l e has been c a r r i e d
out
the ’@’ says t h a t the command should not be echoed i n the s h e l l

changes : ∗.∗
@for i i n $? ; do echo $$ i ; done
@touch changes

2nd r u l e : remove f i l e ’ changes ’ , I m p l i c i t understanding o f t h i s r u l e :
Reset every th ing to the s ta te before make was executed the f i r s t t ime
no ’@’ − see the d i f f e r e n c e
clean :

rm changes

15 / 25

make my day even better!

Make can do variables (and a lot more), too:

simple Makef i le demonstrat ing the use of v a r i a b l e s
c a l l : make −f Makef i le−vars <ru le >

Def in ing a v a r i a b l e
FILELIST := $ (s h e l l f i n d . / −type f)

Accessing a v a r i a b l e . . . as a l i s t and then en t ry by en t ry
a l l :

@echo
@echo f i l e s :
@echo $ (FILELIST)
@echo
@echo f i l e s :
@for i i n $ (FILELIST) ; do echo $$i ; done

16 / 25

Today’s schedule

1 Introduction

2 Remote access: ssh

3 Backup Strategies

4 Makefiles

5 Version control (with subversion)

6 Putting it all together . . .

17 / 25

Version control (with subversion)

What is ‘version control’?
“Version control is the art of managing changes to information.”
(svnbook)

a fileserver that remembers every change ever written to it.
traditionally used by programmers: change little bits of code on
one day only to undo it the next day.
well, that’s just what we do with papers, theses, . . .

What is ‘version control’ NOT?
NOT a backup: creates value (history, log entries, . . .)
Backup your repository every now and then.

What can be under version control?
Depends on tool: CVS – only text files, subversion – text and binary
files

18 / 25

Version control (with subversion)

What is ‘version control’?
“Version control is the art of managing changes to information.”
(svnbook)

a fileserver that remembers every change ever written to it.
traditionally used by programmers: change little bits of code on
one day only to undo it the next day.
well, that’s just what we do with papers, theses, . . .

What is ‘version control’ NOT?
NOT a backup: creates value (history, log entries, . . .)
Backup your repository every now and then.

What can be under version control?
Depends on tool: CVS – only text files, subversion – text and binary
files

18 / 25

Version control (with subversion)

What is ‘version control’?
“Version control is the art of managing changes to information.”
(svnbook)

a fileserver that remembers every change ever written to it.
traditionally used by programmers: change little bits of code on
one day only to undo it the next day.
well, that’s just what we do with papers, theses, . . .

What is ‘version control’ NOT?
NOT a backup: creates value (history, log entries, . . .)
Backup your repository every now and then.

What can be under version control?
Depends on tool: CVS – only text files, subversion – text and binary
files

18 / 25

How it works

REPOSITORY
(data central)

remote or local,
memorizes changes

on write

Client 1 Client 2

reads recent or
older version

writes

$ > s v n a d m i n

$ > s v n

19 / 25

Creating/managing a repository: svnadmin, svn

svnadmin Command line syntax
general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS
& OPTIONS ...]
Type ’svnadmin help <subcommand>’ for help on a
specific subcommand.
subcommands: many! Type ’svnadmin help’ to see them

svn Command line syntax
usage: svn <subcommand> [options] [args]
Type ’svn help <subcommand>’ for help on a specific
subcommand.
subcommands: even more! Type ’svn help’ to see them

20 / 25

Creating/managing a repository: svnadmin, svn

svnadmin Command line syntax
general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS
& OPTIONS ...]
Type ’svnadmin help <subcommand>’ for help on a
specific subcommand.
subcommands: many! Type ’svnadmin help’ to see them

svn Command line syntax
usage: svn <subcommand> [options] [args]
Type ’svn help <subcommand>’ for help on a specific
subcommand.
subcommands: even more! Type ’svn help’ to see them

20 / 25

Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)
$> svnadmin create -fs-type fsfs $PWD/repos

Preparing your project (repository layout):
$> mkdir my_project
$> cd my_project
$> mkdir trunk branches tags
$> mv <project-files> trunk

Putting your stuff under version control
$> svn import my_project
file:///$PWD/repos/my_project

21 / 25

Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)
$> svnadmin create -fs-type fsfs $PWD/repos

Preparing your project (repository layout):
$> mkdir my_project
$> cd my_project
$> mkdir trunk branches tags
$> mv <project-files> trunk

Putting your stuff under version control
$> svn import my_project
file:///$PWD/repos/my_project

21 / 25

Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)
$> svnadmin create -fs-type fsfs $PWD/repos

Preparing your project (repository layout):
$> mkdir my_project
$> cd my_project
$> mkdir trunk branches tags
$> mv <project-files> trunk

Putting your stuff under version control
$> svn import my_project
file:///$PWD/repos/my_project

21 / 25

Creating/managing a repository: svnadmin, svn

Your work is now in the repository, get your local copy!
$> mv my_project my_project_old
$> svn checkout file:///$PWD/repos/my_project/trunk
my_project

Work cycle
$> svn update
edit files locally
$> svn commit

22 / 25

Creating/managing a repository: svnadmin, svn

Your work is now in the repository, get your local copy!
$> mv my_project my_project_old
$> svn checkout file:///$PWD/repos/my_project/trunk
my_project

Work cycle
$> svn update
edit files locally
$> svn commit

22 / 25

Creating/managing a repository: svnadmin, svn

Log of a session (local repository):

eolan : ~ / . . / 0 7 _unix_too ls2 > svnadmin create −−fs−type f s f s $PWD/ repos
eolan : ~ / . . / 0 7 _unix_too ls2 > l s repos
conf db format hooks locks README. t x t
eolan : ~ / . . / 0 7 _unix_too ls2 > mkdir BTM
eolan : ~ / . . / 0 7 _unix_too ls2 > mkdir BTM/ t runk BTM/ tags BTM/ branches
eolan : ~ / . . / 0 7 _unix_too ls2 > cp . . / . . / beyond_the_mouse /∗ . /BTM/ t runk /
eolan : ~ / . . / 0 7 _unix_too ls2 > l s BTM/ t runk /
01_th ink ing_programs . aux 02_fundamentals . pdf . . .
eolan : ~ / . . / 0 7 _unix_too ls2 > svn impor t BTM f i l e : / / / $PWD/ repos /BTM −m " i n i t i a l impor t "
Adding BTM/ t runk
. . .
Committed r e v i s i o n 1 .
eolan : ~ / . . / 0 7 _unix_too ls2 > mv BTM BTM_old
eolan : ~ / . . / 0 7 _unix_too ls2 > svn checkout f i l e : / / / $PWD/ repos /BTM/ t runk BTM
A BTM/04 _fundamentals . snm
. . .
Checked out r e v i s i o n 3 .

remote repositoy: ssh into server, use svnadmin as shown above
svn import my_project svn+ssh://user@server/repos/my_project

svn checkout svn+ssh://user@server/repos/my_project/trunk my_project

23 / 25

Creating/managing a repository: svnadmin, svn

Log of a session (local repository):

eolan : ~ / . . / 0 7 _unix_too ls2 > svnadmin create −−fs−type f s f s $PWD/ repos
eolan : ~ / . . / 0 7 _unix_too ls2 > l s repos
conf db format hooks locks README. t x t
eolan : ~ / . . / 0 7 _unix_too ls2 > mkdir BTM
eolan : ~ / . . / 0 7 _unix_too ls2 > mkdir BTM/ t runk BTM/ tags BTM/ branches
eolan : ~ / . . / 0 7 _unix_too ls2 > cp . . / . . / beyond_the_mouse /∗ . /BTM/ t runk /
eolan : ~ / . . / 0 7 _unix_too ls2 > l s BTM/ t runk /
01_th ink ing_programs . aux 02_fundamentals . pdf . . .
eolan : ~ / . . / 0 7 _unix_too ls2 > svn impor t BTM f i l e : / / / $PWD/ repos /BTM −m " i n i t i a l impor t "
Adding BTM/ t runk
. . .
Committed r e v i s i o n 1 .
eolan : ~ / . . / 0 7 _unix_too ls2 > mv BTM BTM_old
eolan : ~ / . . / 0 7 _unix_too ls2 > svn checkout f i l e : / / / $PWD/ repos /BTM/ t runk BTM
A BTM/04 _fundamentals . snm
. . .
Checked out r e v i s i o n 3 .

remote repositoy: ssh into server, use svnadmin as shown above
svn import my_project svn+ssh://user@server/repos/my_project

svn checkout svn+ssh://user@server/repos/my_project/trunk my_project

23 / 25

Today’s schedule

1 Introduction

2 Remote access: ssh

3 Backup Strategies

4 Makefiles

5 Version control (with subversion)

6 Putting it all together . . .

24 / 25

Putting it all together . . . (assuming we’re the only ones
working on a project)

create directory for all your projects: mkdir /projects

create a new project: new_project.csh <project-name>

coming into the office: make start-day

do your work: make all, every now and then
finish your day: make end-day

25 / 25

	Introduction
	Remote access: ssh
	Backup Strategies
	Makefiles
	Version control (with subversion)
	Putting it all together …

