Beyond the Mouse

MATLAB Input & Output (Getting data into MATLAB and plotting it)

The goal

Spend less time doing stuff computers are good at, and more time doing science (i.e. stuff you can publish).

OR

A program that generates all the figures you need for a paper (or a chapter of your thesis). New dataset -> rerun program -> new paper.

EFFICIENCY / PRODUCTIVITY

Today's schedule

- 1. Plotting data with MATLAB
- 2. Annotating plots (xlabel, ylabel, legend, ...)
- 3. Multiple plots on a figure
- 4. Saving figures
- 5. Getting data into MATLAB
- 6. Miscellaneous
- 7. Examples
- 8. Exercises

1. Plotting data with MATLAB

plot

Graphics

Function plot can be used to produce a graph from two vectors x and y. The code:

```
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
```

produces the following figure of the sine function:

Three-dimensional graphics can be produced using the functions surf, plot3 or mesh.

This code produces a wireframe 3D plot of the two-dimensional unnormalized sinc function:

This code produces a surface 3D plot of the two-dimensional unnormalized sinc function:

2D plotting

Define x-vector >> x = 1:20;
 Define y-vector >> y = x^2;
 plot(x,y) >> plot(x, y)

plot just gives a normal x-y graph with linear axes.

There are other 2D plotting commands, e.g: semilogy, semilogx, loglog stem, stairs, bar

pie, hist

3D plotting

- 1. Define x-vector
- 2. Define y-vector
- 3. Define z-vector
- 4. plot3(x,y,z)
- There are other 3D plotting commands, e.g: surf, mesh, contour pie3, bar3, hist3

3D plotting – 3rd dimension as color

An array can be plotted, using different colours to represent different values.

Example:

>> a = rand(100, 100); % 100 x 100 array of random numbers from 0 to 1
>> imagesc(a);

>> colorbar;

Spectrograms, on the AVO internal webpage, are created in this way, except the array is generated using the **specgram()** command.

(There are 15 different axes on this plot).

Plotting maps: the Mapping Toolbox

>> help map

>> mapdemos

Can write KML (GoogleEarth) >> help kmlwrite

Alternative to GMT

2. Annotating plots

Changing the line style: plot(x,y,s)

By default, plot(x,y) uses a blue line to connect data points >> help plot

Various line types, plot symbols and colors may be obtained with PLOT(X,Y,S) where S is a character string made from one element from any or all the following 3 columns:

b	blue	•	point	_	solid
g	green	0	circle	:	dotted
r	red	x	x-mark		dashdot
С	cyan	+	plus		dashed
m	magenta	*	star	(none)	no line
У	yellow	S	square		
k	black	d	diamond		
W	white	v	triangle (down)		
		^	triangle (up)		
		<	triangle (left)		
		>	triangle (right)		
		р	pentagram		
		h	hexagram		

plot(x,y,s)

plot(x,y,'rx') plot(x,y,'bo') plot(x, y, 'mv-') 🚺 Figure 1 🤇 🚺 Figure 1 🕯 🛃 Figure 1 🥥 _ = × _ = × <u>F</u>ile <u>E</u>dit <u>V</u>iew <u>I</u>nsert <u>T</u>ools <u>D</u>esktop <u>W</u>indow <u>H</u>elp <u>File Edit View Insert Tools Desktop Window Help</u> <u>File Edit View Insert Tools Desktop Window H</u>elp з 1 🖆 🛃 🎍 💊 🔍 🔍 🗐 🐙 🖌 - 🗔 🔲 📰 💷 🛄 🗋 🖆 🛃 🍇 | 🔖 | 🔍 🤍 🤭 🕲 🐙 🖌 - | 🗔 | 🗖 📰 | 💻 🛄 12 🧉 🛃 🔌 🔍 🔍 🔍 🗐 🐙 🖌 - 🗔 🔲 📰 💷 ö 0 <mark>*</mark> 0 юd n

red crosses

black circles

magenta triangles + line

Labelling axes

xlabel ylabel title grid on

Superscripts: 'time^2' => time² Subscripts: 'SO_2' => SO₂ Greek characters: \alpha => α

Adding text

To add text at the position xpos, ypos to the current axes use: >> text(xpos, ypos, 'some_string');

Remember you can use sprintf.

>> text(2.3, 5.1, sprintf('station %s', station{stationNum}));

Default: show all the data.

To override use:

>> set(gca, 'XLim', [xmin xmax]); % x-axis only
>> set(gca, 'YLim', [ymin ymax]); % y-axis only
>> set(gca, 'XLim', [xmin xmax], 'YLim', [ymin ymax]); % both axes

Changing the tick positions/labels

>> get	(gca	, 'XTio	cki)								
. 0)	2	4	6	8	10	12	14	16	18	20

set(gca, 'XTick', 1:3:22)

set(gca, 'XTickLabel', {50, 'Fred', 'March', 'Tuesday', 75.5, 999, 'foobar'})

Plotting against date/time: datenum & datetick

datenum() returns the day number (and fractional day number) in the calendar starting 1st January in the year 0 AD.

Excel dates and times are similar except Excel uses the origin 1st January 1900. But you normally ask Excel to format those cells with a particular date/time format, so you don't see the raw numbers. In MATLAB, datenum gives those raw numbers.

To convert from Excel day-numbers to MATLAB datenum format: mtime = etime + datenum(1900, 1, 1); **Call it like**: datenum(YYYY, MM, DD) datenum(YYYY, MM, DD, hh, mi, ss) datenum('2009/04/29 18:27:00')

Remember to use vectorisation:

redoubtEventTimes = {'2009/03/22 22:38'; '2009/03/23 04:11'; '2009/03/23 06:23'}
dnum = datenum(redoubtEventTimes); % result is a 3 x 1 vector of datenums.
datetick('x'); % can give unexpected results, ask for help.

datestr

I often use dates in plot labels, or in file paths/names.

datestr(array, dateform) is used to generate a human-readable string from an array of dates/times in datenum format.

>> lectureTime = datenum(2009, 4, 29, 12, 30, 0)
733890.5208
>> datestr(lectureTime, 30)
20090427T123000
>> datestr(lectureTime, 31)
2009-04-29 12:30:00
>> datestr(lectureTime, 'mm/dd/yyyy')
04/29/2009
>> xlabel(sprintf('This plot was generated at %s', datestr(now, 31)));

An aside – making dates work for you: YYYYMMDD, not MMYYDD (U.S.) or DDMMYY (Europe). 3. Multiple plots on a figure

MATLAB Graphics Object Hierarchy

figure

To create a new figure with no axes: >> figure;

To highlight a figure that is already displayed (if it doesn't already exist, it will be created): >> figure(2)

To get all the properties associated with a figure: >> get(figure(2))

```
To get a particular property associated with a figure: >> get(figure(1), 'Position')
[420 528 560 420]
```

To modify a particular property associated with a figure: >> set(figure(1), 'Position', [100 100 560 420])

This particular example will just move where figure(1) is plotted on the screen.

To get a 'handle' for the current active figure window use **gcf**. >> **get(gcf, 'Position')** Will return the screen position of the current active figure window.

axes

New figures are created without a set of axes.

To get a 'handle' for the current active set of axes use **gca** (get current axes). Example: get a list of all properties associated with current axes >> get(gca)

>> get(gca, 'position')

This will return the screen position of the current active figure window, which by default is: [0.13 0.11 0.775 0.815]

Format here is [xorigin yorigin xwidth yheight] in fractions of the figure window width.

To modify the position of the current axes within a figure:

>> set(gca, 'position', [0.2 0.3 0.6 0.4])

The axes would start 20% of the way across the screen, 30% of the way up, and be 60% the screen width, and 40% the screen height.

An alternative syntax is just to call the axes command:

>> axes('position', [0.2 0.3 0.6 0.4]);

Either will create a figure if none already exists. Or modify the current set of axes on the current figure.

Multiple plots on a figure 1: hold on

Multiple plots on a figure 2: subplot

subplot(M, N, plotnum)

- an M x N array of plot axes

Multiple plots on a figure 3: axes('position', [...])

Multiple plots on a figure 4: long form of plot command

plot(x1, y1, x2, y2, ..., xn, yn)
% a way of plotting multiple graphs
without using hold on

plot(x1, y1, s1, x2, y2, s2, ..., xn, yn, sn)
% as above, but override the default lin
styles.

You can then use **legend** to create a key for the different graphs in your figure. Add a legend to a graph showing a sine and cosine function:

x = -pi:pi/20:pi; plot(x,cos(x),'-ro',x,sin(x),'-.b') h = legend('cos_x','sin_x',2); set(h,'Interpreter','none')

4. Savings figures to image files

Writing an image file - print

print -f1 -dpng myplotfilena	e.png - script form
print('-f1', '-dpng', '-r200', 'n	<pre>plotfilename.png') - functional form</pre>
-r200 means print with resol	on 200 dots per inch (use lower number for small plot)
-f2 means print figure 2	
Devices include:	
ps, psc, ps2, psc2	- Postscript (c = colour, 2 = level 2)
eps, epsc, eps2, eps2 level 2)	- Encapsulated Postscript (c = colour, 2 =
ill	- Adobe Illustrator format
jpeg90	- JPEG with quality 90 (can be 01 to 99)
tiff	- TIFF
png	- PNG Can also capture a figure window with: >> print –dmeta on a Windows system, and paste it into your document. It does the same thing as ALT-PRT SC.

Writing an image file - print

Example:

You have (numberOfPlots) figures and you want to save all of them as level-2 color encapsulated postscript files with names like myplot1.eps, myplot2.eps:

For plotNum = 2, the print line would evaluate to: print('-depsc2', '-f2', '-r70', 'myplot2.eps')

5. Reading (and writing) data from files

load

• Load data from an ASCII file into an array (must look like an array)

Editor - C:\Users\glenn\Documents\MATLAB\numeric_array.txt
<u>File Edit Text Go</u> Tools Debug Desktop Window Help → ▼ ×
: " <u></u> 😂 📓 & ங 🛍 ") (* 🌭 🗃 - 🗛 💠 → 🎊 📾
: → · · · · · · · · · · · · · · · · · ·
1 7.9933710e-002 8.9788843e-001 -1.0149436e+000
2 -9.4848098e-001 -1.3193787e-001 -4.7106991e-001
3 4.1149062e-001 -1.4720146e-001 1.3702487e-001
4 6.7697781e-001 1.0077734e+000 -2.9186338e-001
5 8.5773255e-001 -2.1236555e+000 3.0181856e-001
6 -6.9115913e-001 -5.0458641e-001 3.9993094e-001
7 4.4937762e-001 -1.2705944e+000 -9.2996156e-001
8 1.0063335e-001 -3.8258480e-001 -1.7683027e-001
9 8.2607000e-001 6.4867926e-001 -2.1320946e+000
10 5.3615708e-001 8.2572715e-001 1.1453617e+000
11

>> a=load('numeric_array.txt')

a =

0.0799	0.8979	-1.0149
-0.9485	-0.1319	-0.4711
0.4115	-0.1472	0.1370
0.6770	1.0078	-0.2919
0.8577	-2.1237	0.3018
-0.6912	-0.5046	0.3999
0.4494	-1.2706	-0.9300
0.1006	-0.3826	-0.1768
0.8261	0.6487	-2.1321
0.5362	0.8257	1.1454

??? Error using ==> load

Number of columns on line 5 of ASCII file numeric_array.txt must be the same as previous lines.

• Load variables from a MATLAB binary file (*.mat)

load() wont work at all with alphabetic characters

2	ÈE	ditor	- C:\U	sers	\gler	nn\E)ocu	men	ts\MA	TLA	B∖st	ri	-		X	
E	ile	<u>E</u> dit	<u>T</u> ext	<u>G</u> o	Т <u>о</u> о	ls I	De <u>b</u> u	ig D	esktop	<u>N</u>	/ind	ow	<u>H</u> elp	ъ	7	×
ł	۳	C	7	¥	ч.	i)	9	6	6		- 1	-	-	»[•]
1	+=	다름	-	1.0		+	÷	1.1	>	:	%¥	% [%]		,		
Г	1	fr	ed													
١.	2	bi	11													
	3	no	rm													
L	4	mi	ke													
L	5	di	ck													
L	6	ja	ne													
	7	ji	11													
L	8	bi	ng													
	9	br	ad													
1	10	da	ve													
\vdash	-			C1					_	4		~ 1	-		1/0	-
L		pla	in text	tile					Ln	1)	Col	5	0	VR	.::

s=load('string_array.txt')
??? Error using ==> load
Unknown text on line number 1 of ASCII file string_array.txt
"free".

MATLAB binary files

Only MATLAB can read/write them. Useful for storing (workspace) variables, so you can reload them later. Use **save** and **load**. Support numeric arrays, strings, cell arrays and structs.

>> save foobar.mat

% saves all workspace variables to the file foobar.mat (.mat extension is optional)

>> save foobar.mat x y

% saves only the workspace variables x and y to the file foobar2.mat

>> save foobar.mat sta*

% saves all workspace variables that begin with the letters 'sta' (* is a wildcard)

>> load foobar.mat % loads the file foobar.mat

>> load foobar x

% loads only the variable x from foobar.mat

📣 MATLAB 7.7.0 (R2008b) 🧐 💷 🗙
<u>F</u> ile <u>E</u> dit De <u>b</u> ug <u>P</u> arallel <u>D</u> esktop <u>W</u> indow <u>H</u> elp
: 🞦 🖂 👗 🐂 🛱 🤊 🍽 🎒 🛃 😰 📝 Inome/glenn 🕞 🗔 💽
Shortcuts 🗷 How to Add 🗷 What's New
Command Window 민 전 X
① New to MATLAB? Watch this Video, see Demos, or read Getting Started.
<pre>>> str.name = 'Joe Sixpack'; >> str.age = 52; >> str.children = 2; >> c = ('RSO'; 'ROWB'; 'REF') C =</pre>

importdata

load wont work with strings. A more versatile function is:

A = importdata('filename.txt', 'delimiter')

>> a=importdata('numeric_array3.txt')

It works without any difficulty for any of the ASCII files we've seen so far: 1

E	ditor - C:\Users\glenn\Documents\MATLAB\stri
<u>F</u> ile	Edit Text Go Tools Debug Desktop Window Help 🛥 🔻 🗙
: ") 🚰 🖩 🎄 🍡 🛍 🤊 (° 🍓 🗇 - 🖩 - 🔽 💌
; +	III → 1.0 + ÷ 1.1 × % % 0.
1	fred
2	bill
3	norm
4	mike
5	dick
6	jane
7	jill
8	bing
9	brad
10	dave
	plain text file Ln 10 Col 5 OVR

1 2 3 4 5 6 7 NaN 8 9 10 11

>> s=importdata('string_array.txt')

s =

'fred' 'bill' 'norm' 'mike' 'dick' 'jane'

'jill'

'bing' 'brad' 'dave' Loads string_array.txt into a cell array

More ambitious – each row is a string followed of length 1 to 11 followed by 0 to 4 numbers (reals and integers).

textscan

	Add in Windes Here		
t Directory	X 5 🗆 🕂	Command Window	× 5 □ +-
MATLAB	• + ÷ ∰•	New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .	
ime 🔺	Date Modified	>>	
ar_array.txt	4/27/09 8:42 PM	>>	
iry	4/27/09 8:37 PM	<pre>>> fid = fopen('mixed_array3.txt');</pre>	
xed_array.asv	4/27/09 10:54 PM	>> s = textscan(fid,'%s %s %s')	
xed_array.csv	4/27/09 10:36 PM		
xed_array.txt	4/27/09 10:04 PM	s =	cols = textscan(fid. format) works. Each column goes into a
xed_array2.txt	4/27/09 10:56 PM	(0rd rell) (0rd rell) (0rd rell)	
xed_array3.txt	4/27/09 11:00 PM	{BXI CEII} {BXI CEII} {BXI CEII}	separate element of a cell array.
meric_array.txt	4/2//09 8:51 PM	>> e(1.3)	
meric_array2.txt	4/27/09 9:17 PIVI	>> S(1.5)	
ing_array.txt	4/27/09 8:58 PM	ans =	You are responsible for opening and closing the file though.
		'name'	
		'frederick'	
		'bob'	fid = fopen(filename, mode)
		'michael'	
		'dick'	
		'jane'	ls used to open a file
		'jill'	
		'bing'	Mode is:
		ang =	r read (default)
			(w) write (overwrite if file already exists)
		'birthday'	w write (over write if the alleady exists)
		'1971-10-18'	'a' append (append to existing file if it already
		'1974-11-15'	
		'1968-03-02'	exists)
		'1961-05-26'	
		'1967-08-13'	
		'1958-01-03'	The latter are only used for writing data out to file
		1980-09-19	The latter are only used for writing data out to me.
		ans =	fclose(fid) is used to close the file. after you've read (or
		Italanhanal	
		'telephone'	written) it.
_array.txt (TXT Fi	le) 💙	373-3212	
		'373-3296'	
		373-3265	
		373-3218	
		373-3256	
No details	available	'373-3209'	
		<pre>>> fclose(fid);</pre>	
		Jx >>	

set(gca, 'XTickLabel', person.name); % change the XtickLabels from1:7 to names

Read a line - fgetl

Line can be any length, any format.

```
Example
  fid=fopen('fgetl.m');
  while 1
    tline = fgetl(fid);
    if ~ischar(tline), break, end
    disp(tline)
  end
  fclose(fid);
```

Useful when each line has fields which appear in fixed positions.


```
<u>File Edit Text Go Cell Tools Debug Desktop Window Help</u>
                                                                                  🍓 🖅 🔹 🛤 🖛 🗰 🈥 💽 🗣 🗐 🛣 🗐 👘 🗊 🚛 🏭 Stack: Base 👽 f 🎗
                                                           🚰 🔲 | 👗 🐂 🖺 🌱 (°)
                                                        * 🖶
                                                                                   × 💥 💥 🕕
                                                              - 1.0
                                                                       +1
                                                                           ÷ 1.1
                                                        1
                                                             function row = readlatlon(filename)
                                                               SREADLATLON read a lation file
                                                        2
                                                        3
                                                               % initialise variables
                                                        4
                                                               linenum = 0;
                                                        5 -
                                                        6
                                                               if (exist (filename, 'file')) % check if the file exists before trying to open it
                                                        7 -
                                                        8 -
                                                                   fid = fopen(filename);
                                                                                              % try to open the file, creating a pointer to it called
                                                        9 -
                                                                   while 1, % loop over all rows in the file
                                                       10 -
                                                                       myline = fgetl(fid);
                                                                                              % read the next line
                                                       11 -
                                                                       if ~ischar(mvline), break, end % end loop when hit a blank line (end of file)
                         C:\Documents and Settings\All User
                                                       12
                                                       13
                                                                       % break up the line into components
                                                       14
                                                       15 -
                                                                       if strcmp(myline(1:2),'20') % if line starts with 20, it's probably a data row
                                                       16 -
                                                                           linenum = linenum + 1:
New to MATLAB? Watch this <u>Video</u>, see <u>Demos</u>, or read <u>Getting</u> S
                                                       17
                                                       18
                                                                           % time
   >> row = readlatlon('latlon.txt')
                                                       19 -
                                                                           yyyy = str2num(myline(1:4));
                                                       20 -
                                                                           mm = str2num(myline(6:7));
                                                       21 -
                                                                           dd = str2num(myline(9:10));
                                                       22 -
                                                                           row(linenum).time = datenum(yyyy, mm, dd);
                                                       23
   1x6 struct array with fields:
                                                       24
                                                                           % lat
                                                       25 -
                                                                           row(linenum).lat = str2num(myline(12:13)) + str2num(myline(15:18))/60;
                                                       26
                                                       27
                                                                           % lon
                                                       28 -
                                                                           row(linenum).lon = str2num(myline(20:22)) + str2num(myline(24:27))/60;
                                                       29
                                                       30
                                                                           % comment
                                                       31 -
                                                                           if length(myline)>28
                                                       32 -
                                                                                row(linenum).comment = myline(29:end);
                                                       33 -
                                                                           end
                                                       34
                                                       35 -
                                                                       end
                                                       36
                                                       37 -
                                                                   end % end of while loop
                                                       38
             lon: 137.5600
                                                       39 -
                                                                   fclose(fid);
                                                                                               % close the file
        comment: 'Four satellites onl⊽'
                                                       40 -
                                                              ∟end
                                                       41
                                                        lation.txt × readlation.m
                                                                            ×
```

2008b)

lel Desktop <u>W</u>indow <u>H</u>elp

ld 🔄 What's New

row =

time

lat

lon

>> row(2)

ans =

£ < comment

time: 733920

lat: 62.8950

Command Window

0

Editor - C: \Documents and Settings\All Users\Documents\My Pictures\Sample Pictures\readiation.m

Read a data type - fscanf

Examples:

- S = fscanf(fid,'%s') reads (and returns) a character string.
- A = fscahf(fid, '%5d') reads 5-digit decimal integers.

Writing to a file - fprintf

```
fout = fopen(filename, 'w') % write to new file filename (replacing file it if already
exists)
for (r=1:numRows) % loop over all rows
```

```
fprintf(fout, '%s\t%12.7f\n', datestr(dnum(r),31), data(r));
```

```
end
fclose(fout)
```

\t = <tab>
\n = <return>
datestr(dnum(r), 31) = print dnum(r) as a datestr using dateform 31
%12.7f= print this real variable as 12 characters with 7 after the decimal
point

Output file might be like:

20090423T180000	1234.1234567
20090423T180100	1357.1357911
20090423T180200	1470.1470369

Related functions:

dlmwrite – for delimited fields (csvwrite for comma delimited fields)

Read an Excel file - xlsread

```
[numeric, txt, raw] = xlsread('myfile.xls'); % will attempt to read all sheets
```

```
[numeric, txt, raw] = xlsread('myfile.xls', 'sheet1'); % read sheet1 only
```

numeric - a matrix that contains all the numeric columns

```
txt – a cell array contain all text columns
```

```
raw – a cell array contain any columns xlsread could not interpret
```

```
Related functions are csvread and dimread
```

Writing an Excel file - xlswrite

xlswrite('myfile.xls', myarray, 'sheet2');

myarray - a numeric array or a cell array

Related functions are csvwrite, dlmwrite

6. Miscellaneous I/O

Graphical input

end

% Get filename dialog [filename, dirname] = uigetfile();

end

% Save filename dialog [filename, dirname] = uiputfile();

% Getting input coordinates from the mouse

[x, y] = ginput(2); % input 2 data points

- useful for picking P and S arrival times
- or start and end of tremor or swarm episodes
- or start and end of episodes of increased degassing

% Designing GUIs

guide;

7. Summary

Plotting commands:

- plot, semilogx, semilogy, loglog, bar, barh, stem, stairs, hist, pie
- plot3, bar3, pie3, hist3, contour, surf, mesh, quiver, (mapping toolbox)
- image, imagesc
- datetick (datenum, datestr), subplot, hold on, axes

Graphical files:

- imread, print

MAT(LAB binary) files:

load, save

Numerical ASCII files:

- load, importdata, save

Text files:

importdata, textscan, fgetl, fscanf, fprintf (fopen/fclose)

Excel files:

- xlsread, xlswrite

Not covered: reading and writing generic binary files with: fopen, fread, fwrite, fseek, fclose

8. Examples

Flyspec data, courtesy of Taryn Lopez

L_	Copy				AA				(2020)	- sentere		15		⊥ <u>ø</u> ⊔	± ±		🔲 Fill 🔻	Zu	uu		
Pas	e d Eormat	Daintar	BIU		3 - A -			Herge	& Center *	<u>ar</u> - 1	% , .0 .00 , 0	Conditiona	I Format	Cell	Insert De	elete Format	Q Class a	Sort 8	k Find &		
*	Clipboard	Fainter		Font	5		Aliana	ant	Ta .	N	umbar Di	Formatting	* as Table	* Styles *	*	* *	Clear *	Filter	* Select *		
	cope		6	s l			Cirgini	i circ			amber	16	Styles		-	iciti.	28	coming			×
_	525		6. 9	/x	_	_										_	-	_	_		*
	A	В	C _	D	E	F	G	H	5101.100	J	K	L	M	N	0	P	Q	R	S	T	
1	550	2008		21	5	54	26.203	55426	5401.468 1	N	15928.82 E		618	0	0	392.12	68.6				
2	551	2008	7	21	5	54	20.012	55426	5401.468 1	N U	15928.62 E		618	0	0	366.94	0.60				
2	552	2000	7	21	5	54	21.431	55421	5401.400 T	N	15920.02 E		610	0	0	200.50	60.0				_
4	553	2000	7	21	5	54	20.040	55420	5401.400 T	N	15320.02 E		618	0	U	390.50	00.5				
6	555	2000	7	21	5	54	29.281	55429	5401.468	N.	15928 82 E		618 1	0							
7	556	2008	7	21	5	54	29.89	55430	5401.468 M	V	15928 82 E		618 1	0							
8	557	2008	7	21	5	54	30.5	55430	5401 468 M	V	15928 82 E		618 1	0							
9	558	2008	7	21	5	54	31 125	55431	5401 468 M	v.	15928 82 E		618 1	Ő	— "т	ho FI V		مان			
10	559	2008	7	21	5	54	31,734	55431	5401.468 M	V.	15928.82 E		618.1	0				iic			
11	560	2008	7	21	5	54	32.343	55432	5401.468 M	V	15928.82 E		618.1	0	Kar	v7220	18 P20	xls c	ontai	ns	
12	561	2008	7	21	5	54	32.968	55433	5401.468 M	N	15928.82 E		618.1	0	Kui	<i>y, 220</i>	0_1 20	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ontui		
13	562	2008	7	21										100	sca	n num	iber				
14	563	2008	7	21	12	20.0 J															
15	564	2008	7	21											yea	ar					
16	565	2008	7	21											<u> </u>						
17	566	2008	7	21	10	0.0 -		. 5.6				à tu			dat	le					
18	567	2008	7	21												n+h					
19	568	2008	7	21			1 4 .	3.5		6.2.5		0.3,95			mo	mun					
20	569	2008	7	21		30.0 - 🦼	R	7° 94	67 ° 6 6		\$ 385. F	₩. . 3			hou	ur					
21	570	2008	7	21		- I 🖇		16 J	N W	. 355 e	1 27 8 . :	77 •			1101	ui					
22	571	2008	7	21			- : : : : : :	۲	· · · 🗗	••	11 1 1 1	· •			mir	n					
23	572	2008	/	21		50.0 -	1 · · ·	•			SF 12										
24	573	2008	7	21		7	- <u>11</u>				9 TE				sec	cond					
20	575	2000	7	21		₹	1				1 21										
20	575	2008	7	21		10 0 -					· · · · •				tim	ne (HHI	MMSS)			
28	577	2000	7	21											1-1	/ .					
20	578	2000	7	21											lat	(degre	ee dec	min)			
30	579	2008	7	21											(N I)						
31	580	2008	7	21											(1)						
32	581	2008	7	21											lon		dor m	in)			
33	582	2008	7	21											1011	B luck	uet III	,			
34	583	2008	7	21		0.0 +		500				-			(F)						
35	584	2008	7	21		0		500	100	00	1500	2	000	25	00 (-)						
36	585	2008	7	21		341	41.020	JJ441	3401.4001	v	13320.02 L		011.1	0	— Dი	n't kno	ow the	next	3 coli	imns	
37	586	2008	7	21	5	54	48.39	55448	5401.468 N	N	15928.82 E		617.7	0					2 20.0		-
38	587	2008	7	21	5	54	48.984	55449	5401.468 N	V	15928.82 E		617.7	0	Co	lumn 1	.7 is SC)2 col	umn (densit	y
39	588	2008	7	21	5	54	49.671	55449	5401.468 N	N	15928.82 E		617.7	0			o ·				
40	589	2008	7	21	5	54	50.25	55450	5401.468	N	15928.82 E		617.6	0	Co	umn 1	.8 IS SC	vz em	issior	rate	
41	590	2008	7	21	5	54	50.859	55450	5401.468	V	15928.82 E		617.6	0							
42	591	2008	7	21	5	54	51.515	55451	5401 468 1	V	15928 82 F		617.6	0	_						
Dece	scane	20 20										L					. .				"
кеаб	V														nio	T SO	2 emis	sinn r	ate vo	time	

Grasshopper diet data, courtesy of Ellen Trainor

A109 T For $\Sigma \equiv$ All Soil Controls												apply a co	nversion factor	
Α	В	C	D	E	F	G	Н	1	J	K	L	M	to all meas	surements
1 RESPIRATIONS 26 treatments (ml/	hr)													
2 Started 14 November 2008		2000								-				
3 Day	1	3	5	7	10	15	19	21	24	26	28			
4 Mebo Diet 1 Frass	0.029941	0.036760	0.021387	0.019372	0.028300	0.021002	0.026037	0.030734	0.02864	47 0.023603	0.015337			
5 Mebo Diet 1 Frass	0.039347	0.029427	0.024627	0.025411	0.040357	0.021274	0.025504	0.025297	0.02614	41 0.026750	0.000358		plot the fil	rst six rows in
6 Mebo Diet 1 Frass	0.045361	0.027650	0.020553	0.025200	0.041636	0.019422	0.026459	0.028628	0.02797	73 0.017469	0.018583		hold as 6 l	ines on a nlot
7 Mebo Diet 1 Frass	0.038216	0.031279	0.022189	0.023328	0.036764	0.020566	0.026000	0.028220	0.02758	87 0.022607	0.011426	121	5010 03 01	incs on a plot
8 Mebo Diet 2 Frass	0.046629	0.027252	0.026722	0.028802	0.051745	0.028179	0.017258	0.023576	0.01228	34 0.002670	0.000438	5		
9 Mebo Diet 2 Frass	0.052348	0.044640	0.028961	0.028229	0.046364	0.000717	0.033413	0.026310	0.01433	36 0.005969	0.001064		computo t	ha araa undar
10 Mebo Diet 2 Frass	0.065282	0.049284	0.036490	0.042543	0.050284	0.026643	0.032548	0.026985	0.02493	32 0.021134	0.000823		compute t	ne al ea unuel
11 Mebo Diet 2 Frass	0.054753	0.040392	0.030724	0.033191	0.049464	0.018513	0.027740	0.025623	0.01718	84 0.009924	0.000775		each line	
12 Mebo Diet 3 Frass	0.028408	0.084356	0.035052	0.038212	0.044131	0.044650	0.036323	0.031559	0.03402	29 0.017198	0.020243			
13 Mebo Diet 3 Frass	0.045540	0.073274	0.039020	0.030590	0.046562	0.034594	0.022943	0.018259	0.01388	34 0.006151	0.012501			
14 Mebo Diet 3 Frass	0.044400	0.100208	0.045564	0.039532	0.051762	0.035126	0.028559	0.023222	0.01690	08 0.009144	0.018806		do the san	ne for the next 6
15 Mebo Diet 3 Frass	0.039449	0.085946	0.039879	0.036111	0.047485	0.038123	0.029275	0.024347	0.02160	07 0.010831	0.017183			
16 Mebo Diet 5 Frass	0.032053	0.034795	0.023463	0.020572	0.034882	0.020807	0.029548	0.030751	0.03454	42 0.020581	0.028493		bold rows	
17 Mebo Diet 5 Frass	0.038439	0.036586	0.029273	0.029888	0.032920	0.011903	0.027028	0.025383	0.01827	78 0.016180	0.019512			
18 Mebo Diet 5 Frass	0.038591	0.037185	0.026900	0.031409	0.039472	0.025069	0.018573	0.014363	0.01344	41 0.009275	0.020603			
19 Mebo Diet 5 Frass	0.036361	0.036189	0.026545	0.027290	0.035758	0.019260	0.025050	0.023499	0.02208	87 0.015346	0.022869		then the n	ext 5
20 Mebo Diet 6 Frass	0.056179	0.062881	0.046108	0.027046	0.036725	0.029483	0.032193	0.016735	0.01275	54 0.009385	0.013267			
21 Mebo Diet 6 Frass	0.060971	0.065381	0.039273	0.022965	0.037150	0.025007	0.021698	0.014975	0.01589	97 0.008545	0.022554			
22 Mebo Diet 6 Frass	0.066800	0.109385	0.053944	0.028759	0.038487	0.027658	0.017694	0.022291	0.00925	56 0.013926	0.007995		then the n	ext 5
23 Mebo Diet 6 Frass	0.061317	0.079216	0.046442	0.026257	0.037454	0.027383	0.023862	0.018000	0.01263	36 0.010619	0.014605			ento
24 Mebo frass Crepis 6/21-6/24	0.025109	0.099019	0.050810	0.034375	0.025598	0.015682	0.011532	0.007736	0.00735	52 0.011333	0.018858			
25 Mebo frass Crepis 6/21-6/24	0.044300	0.107612	0.055580	0.034786	0.026763	0.015381	0.014651	0.005530	0.01313	35 0.011605	0.010397		then the n	ovt 7
26 Mebo frass Crepis 6/21-6/24	0.031514	0.105090	0.081898	0.043379	0.027444	0.007587	0.013728	0.010326	0.01469	96 0.008791	0.019155		then the h	
27 Mebo frass Crepis 6/21-6/24	0.033641	0.103907	0.062763	0.037514	0.026601	0.012884	0.013304	0.007864	0.01172	27 0.010577	0.016137			
28 Mebo frass Dandelion 6/21-6/24	0.026125	0.237728	0.125275	0.072588	0.081534	0.017118	0.050571	0.052207	0.03844	41 0.026424	0.024487		than tha n	ovt 1
29 Mebo frass Dandelion 6/21-6/24	0.020139	0.244282	0.091423	0.055880	0.052801	0.022627	0.025395	0.027898	3 0.0178 ⁴	17 0.022933	0.027727		then the h	ext 4
30 Mebo frass Dandelion 6/21-6/24	0.039729	0.207743	0.103861	0.072641	0.052413	0.018400	0.030701	0.023240	0.03351	0.016/89	0.024253			
31 Mebo frass Dandelion 6/21-6/24	0.028665	0.229918	0.106853	0.067036	0.062250	0.019381	0.035556	0.0			Mer	idic Diet Fras	s	
32 Mebo frass Willow 6/21-6/26	0.054596	0.207699	0.079345	0.054584	0.036836	0.015952	0.006870	0.0	0.250000					
33 Mebo frass Willow 6/21-6/26	0.052565	0.229171	0.120664	0.056337	0.037465	0.012946	0.025919	0.0						
34 Mebo frass Willow 6/21-6/26	0.050980	0 143724	0 146130	0.056944	0.035093	0.015005	0 027627	0.0						
35 Mebo frass Willow 6/21-6/26	0.052713	0.193531	0.115380	0.055955	0.036465	0.014634	0.020138	0.0	. 200000					
36 Mebo frass Run 2 Brome 7/18-	0.017822	0.082620	0 112102	0.071902	0.039908	0.024361	0 029167	0.0						
37 Mebo frass Run 2 Brome 7/18-	0.027884	0.095826	0.086322	0.044031	0.050002	0.011080	0 029279	0.0						
38 Mebo frass Run 2 Brome 7/18-	0.035452	0.125128	0.092414	0.047351	0.043226	0.012924	0.012425	0.0	1 50000					
39 Mebo frass Run 2 Brome 7/18-	0.027052	0.101191	0.096946	0.054428	0.044379	0.016122	0.023624	0.0	.150000					A Male Dist 4 From
40 Mebo frass Run 2 Crepis 7/18-	0.032164	0 156388	0 070297	0.048499	0.039589	0.009032	0.028215	0.0 =						Hebe Diet 2 Frass
41 Mebo frass Run 2 Crepis 7/18-	0.022936	0 153139	0.078992	0.046844	0.050070	0.028356	0.012309	0.0						▲ Mebe Diet 3 Frass
42 Meho frass Run 2 Crenis 7/18-	0.031340	0.161858	0.091402	0.058211	0.054596	0.022125	0.032035	0.0	0.100000					The Mebe Diet 6 Frass
43 Meho frass Run 2 Crenis 7/18.	0.028813	0 157128	0.080230	0.051185	0.048085	0.019838	0.024187	0.0		A				
44 Meho frass Rup 2 Dandelion 7/18	0.017573	0.061471	0 142079	0 111889	0.054791	0.035716	0.028574	0.0						
45 Meho frass Run 2 Dandelion 7/18-	0.020690	0 159492	0.090359	0.070210	0.041087	0.027204	0.027992	0.0	0.050000 👯		-			
46 Mebo frass Run 2 Dandelion 7/18	0.01913	0.11048	0.11622	0.09105	0.04794	0.031/6	0.02828	0.	A ~~					
47 Cheu frass Brome 7/12-7/18	0.043432	0.1/1/770	0.092225	0.063379	0.039101	0.016253	0.02020	0.0						
48 Cheu frass Brome 7/12-7/18	0.043432	0.136011	0.088028	0.060811	0.022310.0	0.025027	0.026615	0.0	000000				***	
49 Cheu frass Brome 7/12-7/18	0.041303	0.177715	0.086546	0.068967	0.040230	0.023027	0.020015	0.0	0.1	Celumn C Cel	umn E Celum	nn G Celur	nn I Column K	
I I I I I /Chcu Frass Calibrations / Sche	nk s Shultz s Gi	reen s Frass /	Meridic Diet C:	adavers /Soil (Controls \ She	et1./Shell∢	0.03/111	0.0.	Celumn E	s Celumn D	Column F	Column H	Column J Column	nL
Phoet 7/0	o			100%							day			
Sneet / / 9 Pages	style_sheet1			100%	SIL									

Exercises (optional)

Write scripts (or functions) to do the following:

Exercise 1:

- (Download the image file http://www.avo.alaska.edu/images/logos/logo_avo_transparent_new.jpg).
- Load the image into MATLAB (into an array A) with imread
- Plot it with imagesc
- Find the size of the array
- Find the **min**imum and **max**imum values
- Add a colorbar
- Add a title, xlabel, ylabel
- Move the figure on the screen with **set**(gcf, 'Position', ...)
- Move the axes with **set**(gca, 'position', ...)

Exercise 2:

- Store rows 5, 10 and 20 of the array A in new vectors
- In a new figure, plot (in 2D) each of those 3 vectors in a different subplot
- In a new figure, plot (in 2D) each of those 3 vectors on same axes using hold on
- **set** the range of data shown (zoom in)
- set tick position
- Add **xlabel**, **ylabel**, **title** and **legend**.
- print to an EPS file

Exercise 3:

- Load an Excel worksheet containing data (**xIsread**)
- **plot** some of the data in MATLAB.
- **print** to a PNG file.
- View the PNG file in your web browser.
- Modify the data in MATLAB.
- Write to new data back to a worksheet in Excel (xlswrite)

Send your scripts to <u>gthompson@alaska.edu</u> if you want feedback.