
Beyond the Mouse – A
Short Course on

Programming
11. Debugging

Solving Major (and minor) Crises

Ronni Grapenthin

Geophysical Institute, University of Alaska
Fairbanks

November 19, 2009 “The Uncomfortable Truths Well”,
http://xkcd.com/568 (April 13, 2009)

1 / 13

Review: Software Development Cycle

1 Design
2 Coding
3 Test
4 Debugging
5 go back to 1,2, or 3, . . .

2 / 13

What is a bug?

A mistake in a computer program . . . or:

The First “Computer Bug”,
U.S. Naval Historical Center Photograph, NH 96566-KN3 / 13

What causes bugs?

“Bug”,
http://xkcd.com/376

bad / unexpected values:
check user / function input!
messed up logic: want x
programmed y.
unwarranted assumptions:
units.
rarely moths, usually people.

4 / 13

What is “debugging”?

Debugging is the art of finding and fixing mistakes in computer
programs. To be successful you need insight, creativity, logic, and
determination.

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

Brian Kernighan

5 / 13

What is “debugging”?

Debugging is the art of finding and fixing mistakes in computer
programs. To be successful you need insight, creativity, logic, and
determination.

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

Brian Kernighan

5 / 13

Truths about bugs and debugging . . .

Bugs are static – they won’t run away!
Often, the problem is simple.
You created the bug! It’s nobody else’s fault - suck it up!
Be critical – did you mean ’<’, ’<=’, ’>’, ’>=’?
Don’t panic – be systematic!
Sleep, go for a walk, come back later.

6 / 13

Debugging Styles

echoing: place print statements at useful points in a program
(function entry, exit)
unit testing: write calls to particular function, throw artificial
values at it
exception handling: in high level languages: sources of mistakes
easier to spot
online debuggers: for our purposes not necessary, useful if you
want to step through your code, or for memory problems

7 / 13

Debugging Styles: echoing

. . . we find stepping through a program less productive than
thinking harder and adding output statements and
self-checking code at critical places. Clicking over
statements takes longer than scanning the output of
judiciously-placed displays. It takes less time to decide where
to put print statements than to single-step to the critical
section of code, even assuming we know where that is. More
important, debugging statements stay with the program;
debugging sessions are transient.

From: Brian Kernighan, Rob Pike “The Practice of Programming”

write method that displays text only if a global DEBUG flag is set
find ways to implement such external switches – for SHELL:
environment vars, Matlab: create your own preferences
call this method whenever necessary: entry, exit of functions, to
display certain values, to follow the program flow, . . .

8 / 13

Debugging Styles: echoing

. . . we find stepping through a program less productive than
thinking harder and adding output statements and
self-checking code at critical places. Clicking over
statements takes longer than scanning the output of
judiciously-placed displays. It takes less time to decide where
to put print statements than to single-step to the critical
section of code, even assuming we know where that is. More
important, debugging statements stay with the program;
debugging sessions are transient.

From: Brian Kernighan, Rob Pike “The Practice of Programming”

write method that displays text only if a global DEBUG flag is set
find ways to implement such external switches – for SHELL:
environment vars, Matlab: create your own preferences
call this method whenever necessary: entry, exit of functions, to
display certain values, to follow the program flow, . . .

8 / 13

Debugging Styles: echoing

. . . see btm_schedule demo . . .

9 / 13

Debugging Styles: unit testing

at the simplest: write calls to your functions with artificial values
execute these calls at the beginning of your code, check function
results
this helps to detect errors due to changes in functions immediately
also: assertion that function works for tested TYPES
can be done for any language (some languages come with fancy
frameworks)

10 / 13

Debugging Styles: unit testing

. . . see btm_schedule demo . . .

11 / 13

Debugging Styles: exception handling

Full exception handling support in Matlab:

Matlab – try-catch

% t ry , STATEMENT, catch ME, STATEMENT, end .
%
% EXAMPLE: f i l e opening

t r y
f i d = fopen (’ whatever . t x t ’ , ’ r ’) ; % open a non−e x i s t i n g f i l e
data = fread (f i d) ; % now t r y to get i t s data

catch myException % any name f o r e r r o r message ob jec t
%l e t the user know , implement g race fu l program te rm ina t i on . . .
disp (myException) ; % disp lay f u l l e r r o r ob jec t
disp (myException . message) ; % actua l message i s more access ib le
disp (myException . s tack) ; % where d id th ings occur?

end

disp (’We do get here ! ’)

%now wi thou t t r y−catch . . .
f i d = fopen (’ whatever . t x t ’ , ’ r ’) ;
data = fread (f i d) ;

disp (’We cannot get here ! ’)

12 / 13

Debugging Styles: online debugger

. . . see demo . . .

13 / 13

