
Beyond the Mouse – A
Short Course on

Programming
2. Fundamental Programming

Principles I:
Variables and Data Types

Ronni Grapenthin

Geophysical Institute, University of Alaska
Fairbanks

September 19, 2010
“The Uncomfortable Truths Well”,

http://xkcd.com/568 (April 13, 2009)

1 / 22

Today’s schedule . . .

1 How does (computer) programming work?

2 Variables and Datatypes

2 / 22

Today’s schedule

1 How does (computer) programming work?

2 Variables and Datatypes

3 / 22

How does (computer) programming work?

Well, fist we should clearify terminology here!

What is a programming language?

What is a program?

4 / 22

Alright, what is it then?

Definitions (broad sense)
A programming language is an unambiguous artificial language that
is made up of a set of symbols (vocabulary) and grammatical rules
(syntax) to instruct a machine.

A program is a set of instructions in one or multiple programming
languages that specifies the behavior of a machine.

Compilation or interpretation is the verification of a program and its
translation into in the machine readable instructions of a specific
platform.

5 / 22

Programming languages . . . continued

Two broad families can be identified:
1 Interpreted languages

An interpreter program is necessary to take in commands, check
syntax and translate to machine language at runtime (e.g., Matlab,
Unix Shell)

2 Compiled languages
Programs are translated and saved in machine language. At
runtime no additional program is necessary (e.g., C/C++).

6 / 22

Programming languages . . . continued

Two broad families can be identified:
1 Interpreted languages

An interpreter program is necessary to take in commands, check
syntax and translate to machine language at runtime (e.g., Matlab,
Unix Shell)

2 Compiled languages
Programs are translated and saved in machine language. At
runtime no additional program is necessary (e.g., C/C++).

6 / 22

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

7 / 22

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

7 / 22

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

7 / 22

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

7 / 22

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)

5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

7 / 22

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)

6 if errors, fix them and go back to (3)

7 / 22

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

7 / 22

Don’t even think that’s as simple as it sounds . . .

‘Hello World’ in Matlab
1 >> dsp (halo o r l d

??? dsp (halo o r l d
3 |

E r ro r : Unexpected MATLAB expression .
5

>> dsp (’ halo o r l d
7 ??? dsp (’ halo o r l d

|
9 Er ro r : A MATLAB s t r i n g constant i s not terminated p rope r l y .

11 >> dsp (’ halo o r l d ’
??? dsp (’ halo o r l d ’

13 |
E r ro r : Expression or statement i s i n c o r r e c t−−poss ib l y unbalanced (, { , or [.

15
>> dsp (’ halo o r l d ’)

17 ??? Undefined function or method ’ dsp ’ for input arguments o f type ’ char ’ .

19 >> disp (’ halo o r l d ’)
halo o r l d

21
% Semat ica l l y co r rec t , i f you want to say ’ h i ’ to the world :

23 %
>> disp (’ h e l l o wor ld ’)

25 h e l l o wor ld

Listing 2.1: hello_world.log

8 / 22

Today’s schedule

1 How does (computer) programming work?

2 Variables and Datatypes

9 / 22

Variables (1)

Definitions – a selection
Donald Knuth: A quantity that may possess different values as a
program is being executed.
Mehran Sahami: A box in which we stuff things – i.e. a box with
variable content.
Wikipedia: User defined keyword that is linked to a value stored in
computer’s memory (runtime).

The concept of a variable consists of:

name
type
value

10 / 22

Variables (1)

Definitions – a selection
Donald Knuth: A quantity that may possess different values as a
program is being executed.
Mehran Sahami: A box in which we stuff things – i.e. a box with
variable content.
Wikipedia: User defined keyword that is linked to a value stored in
computer’s memory (runtime).

The concept of a variable consists of:
name
type
value

10 / 22

Memory interlude

“Depth”,
http://xkcd.com/485 (September 16, 2009)

11 / 22

Memory interlude

“Depth”,
http://xkcd.com/485 (September 16, 2009)

11 / 22

Variables (2) – name

USE MEANINGFUL NAMES!

valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!
USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity
use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading
a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

12 / 22

Variables (2) – name

USE MEANINGFUL NAMES!
valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!

USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity
use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading
a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

12 / 22

Variables (2) – name

USE MEANINGFUL NAMES!
valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!
USE MEANINGFUL NAMES, i.e. names that speak:

‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity
use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading
a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

12 / 22

Variables (2) – name

USE MEANINGFUL NAMES!
valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!
USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity

use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading
a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

12 / 22

Variables (2) – name

USE MEANINGFUL NAMES!
valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!
USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity
use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading

a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

12 / 22

Variables (2) – name

USE MEANINGFUL NAMES!
valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!
USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity
use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading
a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

12 / 22

Variables (3) – type

What is a type? – Think of sets of numbers in math: N, R, Z, . . . The
type refers to how numbers are being represented in a computer’s
memory, i.e. which bit has which meaning, and how many bits are
necessary

Two kinds of Types
primitive, built in types – for MATLAB e.g.: ‘int32’, ‘double’,
‘boolean’
complex, home made types – (arrays,) structs, cell arrays
(Matlab), classes

Types in Programming Languages
some languages, e.g. MATLAB, Shells, Perl are weakly typed:
implicit type conversions (OR one type can be treated as another)
this is nice at first, occasionally this leads to nasty/hard to fix
problems (e.g. string interpreted as number, etc.)

13 / 22

Variables (3) – type

What is a type? – Think of sets of numbers in math: N, R, Z, . . . The
type refers to how numbers are being represented in a computer’s
memory, i.e. which bit has which meaning, and how many bits are
necessary

Two kinds of Types
primitive, built in types – for MATLAB e.g.: ‘int32’, ‘double’,
‘boolean’
complex, home made types – (arrays,) structs, cell arrays
(Matlab), classes

Types in Programming Languages
some languages, e.g. MATLAB, Shells, Perl are weakly typed:
implicit type conversions (OR one type can be treated as another)
this is nice at first, occasionally this leads to nasty/hard to fix
problems (e.g. string interpreted as number, etc.)

13 / 22

Variables (3) – type

What is a type? – Think of sets of numbers in math: N, R, Z, . . . The
type refers to how numbers are being represented in a computer’s
memory, i.e. which bit has which meaning, and how many bits are
necessary

Two kinds of Types
primitive, built in types – for MATLAB e.g.: ‘int32’, ‘double’,
‘boolean’
complex, home made types – (arrays,) structs, cell arrays
(Matlab), classes

Types in Programming Languages
some languages, e.g. MATLAB, Shells, Perl are weakly typed:
implicit type conversions (OR one type can be treated as another)
this is nice at first, occasionally this leads to nasty/hard to fix
problems (e.g. string interpreted as number, etc.)

13 / 22

Variables (4) – value

Value
a value of the type of the variable: 23, 3.1415926..., false

i.e., the thing we stuff in the box
can/should change during the runtime of the program, otherwise
use a constant (if possible)

Declaring a variable and Assigning a value:
In General: (type) name = value; or (type) name =
expression;

Matlab: myNewVar = 10; TC-Shell (differs) set myNewVar = 10;
Access to the values (de-referencing):
Matlab: use myNewVar; TC-Shell (differs) use ‘$’: $myNewVar

What’s that?
myNewVar = myNewVar + 1;

14 / 22

Variables (4) – value

Value
a value of the type of the variable: 23, 3.1415926..., false

i.e., the thing we stuff in the box
can/should change during the runtime of the program, otherwise
use a constant (if possible)

Declaring a variable and Assigning a value:
In General: (type) name = value; or (type) name =
expression;

Matlab: myNewVar = 10; TC-Shell (differs) set myNewVar = 10;
Access to the values (de-referencing):
Matlab: use myNewVar; TC-Shell (differs) use ‘$’: $myNewVar

What’s that?
myNewVar = myNewVar + 1;

14 / 22

Variables (4) – value

Value
a value of the type of the variable: 23, 3.1415926..., false

i.e., the thing we stuff in the box
can/should change during the runtime of the program, otherwise
use a constant (if possible)

Declaring a variable and Assigning a value:
In General: (type) name = value; or (type) name =
expression;

Matlab: myNewVar = 10; TC-Shell (differs) set myNewVar = 10;
Access to the values (de-referencing):
Matlab: use myNewVar; TC-Shell (differs) use ‘$’: $myNewVar

What’s that?
myNewVar = myNewVar + 1;

14 / 22

Advanced Variables: Vectors and Matrices (1)

Array variables
are lists, vectors, matrices of data (1 to n dimensional – book
keeping can become a hassle)
therefore instead of one value they hold a list of values
linked to a chunk of memory (a sequence of boxes)
access by index number
MATLAB treats everything as a matrix
Shells allow only vectors.

15 / 22

Memory interlude (2)

“Depth”,
http://xkcd.com/485 (September 16, 2009)

16 / 22

Memory interlude (2)

“Depth”,
http://xkcd.com/485 (September 16, 2009)

16 / 22

Memory interlude (2)

“Depth”,
http://xkcd.com/485 (September 16, 2009)

16 / 22

Memory interlude (2)

“Depth”,
http://xkcd.com/485 (September 16, 2009)

16 / 22

Advanced Variables: Vectors and Matrices (2)

Example: Numeric Vector
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
vector: 12 23.3 23.3 nan nan 1 42 42.1 23 5 nan nan 0 0 0

Example: String
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sting: h e l l o w o r l d ! ! ! !

17 / 22

Advanced Variables: Vectors and Matrices (2)

Example: Numeric Vector
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
vector: 12 23.3 23.3 nan nan 1 42 42.1 23 5 nan nan 0 0 0

Example: String
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sting: h e l l o w o r l d ! ! ! !

17 / 22

Advanced Variables: Vectors and Matrices (3)

Setting up a numeric Matrix: Equinox marathon pacing tables

index Mile
1 1
2 5
3 10
4 15
5 20
6 25
7 26.2

18 / 22

Advanced Variables: Vectors and Matrices (3)

Setting up a numeric Matrix: Equinox marathon pacing tables

index Mile record
1 1 0:05:55
2 5 0:30:01
3 10 0:59:56
4 15 1:35:01
5 20 2:04:59
6 25 2:32:19
7 26.2 2:40:00

19 / 22

Advanced Variables: Vectors and Matrices (3)

Setting up a numeric Matrix: Equinox marathon pacing tables

index Mile record well trained
1 1 0:05:55 0:08:42
2 5 0:30:01 0:44:06
3 10 0:59:56 1:28:01
4 15 1:35:01 2:19:33
5 20 2:04:59 3:03:34
6 25 2:32:19 3:43:43
7 26.2 2:40:00 3:55:00

20 / 22

Advanced Variables: Vectors and Matrices (3)

Setting up a numeric Matrix: Equinox marathon pacing tables

index Mile record well trained mildly trained
1 1 0:05:55 0:08:42 0:10:55
2 5 0:30:01 0:44:06 0:55:21
3 10 0:59:56 1:28:01 1:50:29
4 15 1:35:01 2:19:33 2:55:05
5 20 2:04:59 3:03:34 3:50:26
6 25 2:32:19 3:43:43 4:40:50
7 26.2 2:40:00 3:55:00 4:55:00

21 / 22

Advanced Variables: Vectors and Matrices (3)

Equinox marathon pacing table in Matlab
% UAF/ GI Beyond the mouse , f a l l 2010 , Ronni Grapenthin

2 % EXAMPLE: 2D mat r i x (Table) , p r i n t s l i s t o f t imes t h a t can be used f o r op t ima l
% Equinox 2011 prepara t ion

4 % parameter : mi les −− miles you ’ ve run

6 function pac ing_tab le (mi les)

8 % Set up pacing tab l e : Give mi les as numbers and t imes as s t r i n g s (requ i res a c e l l array ,
% hence the c u r l y braces)

10 pace_table = { 1 ’ 0:05:55 ’ ’ 0 :08:42 ’ ’ 0 :10:55 ’ ;
5 ’ 0:30:01 ’ ’ 0 :44:06 ’ ’ 0 :55:21 ’ ;

12 10 ’ 0:59:56 ’ ’ 1 :28:01 ’ ’ 1 :50:29 ’ ;
15 ’ 1:35:01 ’ ’ 2 :19:33 ’ ’ 2 :55:05 ’ ;

14 20 ’ 2:04:59 ’ ’ 3 :03:34 ’ ’ 3 :50:26 ’ ;
26.2 ’ 2:40:00 ’ ’ 3 :55:00 ’ ’ 4 :55:00 ’ } ;

16
% Since I ’m lazy and didn ’ t want to type a l l the miles , a mi le does not equal the index ,

18 % hence we ’ l l have to do some math . Index i s rounded number o f mi les d iv ided by 5. Since
% Matlab ind i ces s t a r t a t 1 , we have to add a 1. Otherwise every th ing smal le r than 2.5 mi les

20 % would r e s u l t i n an e r r o r
i dx = round (mi les / 5) + 1 ;

22
% lame output

24 pace_table (idx , :) ; pause

26 % fancy output :
disp (’ ’) ;

28 disp (’ mi les record we l l t r a i n e d m i l d l y t r a i n e d ’) ;
disp (’ −− ’) ;

30 disp (pace_table (idx , :)) ;
end

Listing 2.2: pacing_table.m

22 / 22

	How does (computer) programming work?
	Variables and Datatypes

