UNI

IN ANUTSHELL

A Desktop Quick Reference
Covers GNU/Linux, Mac OS X, and Solaris

O’RE"—LYQ Arnold Robbins

Unix Tools 1

OREILLY"

A Quick Pocket Roference for a Lty
Fevry Loy Uver Needs

O'REILLY"

Jobn Bambenek &
Agnieszba Klus

Resources

* Unix and Linux
— It comes with the package

* Macintosh
— Really a Unix machine with fancy wrapping
— Terminal.app

* Windows

— VirtualBox: http://www.virtualbox.org/
— Or you could try Cygwin: http://www.cygwin.com/

Outline

What is Unix, what is the shell?
Directories, files, wildcards

Redirecting input/output, pipes
Variables and control

Power tools: GMT, etc. in future lectures

Need more power? Upgrade to perl

* perl = Practical Extraction and Reporting
Language

* perl = Pathologically Extensible Rubbish Lister

Unix

* Unix is the most common operating system for “serious
computers”

— Developed in 1969 at Bell Labs (of the old AT&T)
— At first, could support two simultaneous users!

— Rewritten in Cin 1973 (before that, assembly language)
* From Wikipedia:

— Unix was designed to be portable, multi-tasking and multi-user
in a time-sharing configuration. Unix systems are characterized
by various concepts: the use of plain text for storing data; a
hierarchical file system; treating devices and certain types of
inter-process communication (IPC) as files; and the use of a
large number of software tools, small programs that can be
strung together through a command line interpreter using
pipes, as opposed to using a single monolithic program that
includes all of the same functionality. These concepts are
known as the Unix philosophy.

Unix, Unices, Linux

* Numerous Unix variants have sprung up over the years,
some academic and some commercial.
— BSD, Solaris, HP-UX, ...
— Linux is unix-like, not Unix
» Started as a hobby project by Linus Torvalds

* Made useful by existence of free, open source software tools (like
the Gnu project)

* OS consists of two major parts: kernel and everything
else

— Kernel: master control program, starts and stops
processes, handles low-level file/disk access, etc.

— Many modular tools and programs
— Every program runs within its own process
— User interacts through a command shell

Programs = Little Black Boxes

 Just about every thing you use in Unix/Linux is really

an external program (not a shell command or part of
the kernel).

* Most of these communicate with the outside world
In just 4 ways
— They get arguments on the command line
— They receive input from standard input
— They send output to standard output
— (They also send error messages to standard error).

* Small, reusable pieces that you can assemble in any
way you like to do complex tasks.

Examples of Tools

1s print a listing of files in a directory
mv move or rename files

— Example:
jeff% 1s SRTM
SRTM1/ SRTM3/

° ”jeff%” is a prompt from the shell, telling me it is ready for input
* |typed “1s SRTM”
* Thels program produced some output: “SRTM1/ SRTM3/”

Note that Unix treats even directories, inputs and outputs as
files.

You might think these are “low level” functions of the
operating system, but each exists as an independent program.
They take parameters (given as command line arguments),
and send output to a “standard output” file

Strengths and Weaknesses

e Strengths
— Underlying philosophy has proven wildly successful
— Unix is a very robust OS (Linux approximately so)
— Simple tools can be linked together to do complex
things; Unix makes this easy
* Weaknesses

— Names of many commands/programs are famously
cryptic
— Online help in the form of man pages, which are

really designed to remind experts of details they have
forgotten, not teach novices how things work.

What is the Shell?

 The shell is a user interface. It is a program that
interprets the commands you type and executes them.
It also provides output in some useful form (to a
window on your screen)

— |t send output to “standard output”

 The shell doesn’t care whether its input comes from
the keyboard or from a file

— It takes input from “standard input”
— As far as Unix is concerned, the keyboard is just another
file.
 Many shells can be running at once, each with its own
little world inside it.

— You can start up one or more sub-shells, which do
something and report output back to your shell.

Which Shell?

* There are many different shells
— Bourne shell (sh)
— Cshell (csh) syntax is more like the C language
— tcsh (tcsh) is really like the C shell, except it is free
— Bash (the Bourne Again SHell) popular with Linux
— More shells: ksh, zsh, ...

 Which shell is the best?
— Which is better, rock or jazz?
— | will use tcsh in my examples

 Which is your default shell?
— Seislab Suns: tcsh
— Geodesy Lab Linux: tcsh
— Mike West’s Linux: bash
— You can change your default shell

Some basics: directories

* Files are organized into directories, like in every
other computer system. You might refer to a file
like this:

/srtm/version2/SRTM3/Africa/S35E025.hgt.zip
* Names are case-sensitive! Jeff.dat # jeff.dat

* Unix has two particular ways of specifying files or
directories:
— Full pathnames
/home/jeff/junk files/bork.dat
— Relative pathnames
bork.dat
junk files/bork.dat

* Partial pathnames are relative to the current directory

Some basics: current directory

The current directory is the directory you are sitting in right
now

— In a graphical system, this is the top window in your “Windows
Explorer” or “Finder”.

— If you create a new file, it will be in this directory unless you tell
the shell otherwise.

Some directory commands:
cd junk files (change current directory)

pwd (print working directory)
Special directory symbols:

. (the current directory)

. (one level up)

~ (your home directory)

Some basics: wildcards

It is really useful to be able to match several filenames at once. For
example
mv bork.dat fubar.* junk files

— The wildcard * matches any number of characters, so the line above
would match these files:
e fubar.txt, fubar.job, fubar.1

— But not the file fubarl.txt

Wildcards:
* (match O or more characters)
? (match 1 character)

What does this match?
09*alaska*.??d
Here is a fancier wildcard, which matches a range of characters:
clgo20090[1-6]?7?.dat
.[a=-2]%*

Wildcard Quiz
| fooldat | borkdat | foobartxt | My files.txt

foo*

* txt

%k

?077?.*

Did you ace the quiz?
Extra Credit:

foo?.”

[a-z]*

*t

For some reason, evaluating
wildcards is called “globbing”

Some basics: the path

 When you type something, the shell will try to
execute it as a program. For example:

— jeff% rm bork.dat

— The shell breaks it down this way:
* Program to run: rm
* Argument(s) passed to program: bork.dat

— This particular command removes (rm) the file
named bork.dat

— How does the shell know where to find the
program rm?

The path: path or PATH

It uses a special variable called the path.

Both csh and tcsh have two ways to set the path.
The sh and bash shells do the same thing in a
different way.

setenv PATH /gipsy/bin:S{PATH}

set path = (/gipsy/bin Spath)
The shell internally maintains a list of all executable
programs in these directories.

It looks in the first directory in the list first.

— If you have two programs with the same name, you
need to know the path to know which one will be
executed!

Everything is Scriptable

 Why do repetitive tasks yourself? That’s what you have a
computer for.

* This is equally true for shell scripts and MATLAB programs
(yes, the MATLAB command window is a kind of shell)

* A script doesn’t have to be complicated to be useful, it just
has to do something reliably and more easily than typing.

* Here’s a script | use to update the online copy of my
website from the master code on my own computer.

#!/bin/tcsh -f
cd ~/Sites/jeff
rsync --rsh=ssh -av * denali.gps.alaska.edu:/home/jeff/Web

The tilde (~) is a special character that means your home directory

Everything is Scriptable

* Don’t
— Type a long series of commands over and over again
— Copy and paste a long series of commands

e Do!

— Any set of commands you type at the prompt can be
saved and made into a script for repeating later

— Recording the commands you type can be a good way
to get started at making a simple program.

— Learn to use variables to make your series of
commands more general and improve automation.

Redirecting Input and Output

* Many programs are Examples:
designed to take input from

standard input, and send
output to standard output.
— By default, these are the — Is *.dat > myfiles
keyboard and screen — psxy infile.dat > map.ps
— You can change that!

e Thisis called I/O redirection
— > means redirect output

* Send the output of
something to a file:

* Take input from a file
— sort < myfiles

— < means redirect input e Both at the same time:
— Y.ou can use both at the same — myprogram < commands
time

> output

Unleashing the Shell: the Pipe

* A “Pipe” is a way for the Examples:
output of one program to

be sent as the input to Use a pager:

another program. — Is *.dat | more

« Avertical bar (|)indicates ¢ Count files of a given
a pipe type:

* You can pipe together as — |s *.dat | wc -|

many programs as you like,
as long as each one reads
from standard input and
writes to standard output. * More

e Sort listings:
— Is—l | sort —=nr —k 5

— Is—I | sort—nr —k 5 | more

Shell Variables

Regular variables

— Purely internal to each

shell

— Generally lowercase

* Environment variables

— Can be accessed from
within programs started
by shell

How to set a variable

— set counter =3

— Generally uppercase

* How to set:

— @ counter = Scounter + 1

— setenv PRINTER blackburn

How to access it

— echo Scounter
A neat trick:

* How to access
— echo SPRINTER

— set datfiles = 'Is *.dat’

Control Structures

Conditionals

e if (test)then ... end
— if (test) statement
— if—then—else—end
— if —then —elseif —end

e Test can be a comparison to
a numerical or string value,
or special stuff:

— if (Sval ==0) echo “Zero!”
— if (Scount > 1) echo positive

— if (-d Sfile) echo “Sfile is a
directory”

Loops
 foreachval(*)...end
e while (test) ... end

Syntax: MATLAB vs. tcsh
. wmAmAB | tsh

i =20; seti=20
i=i+1 @i=Si+1
if(a==b) if (Sa ==Sb) then
i=i+1; @i=Si+1
disp(num2str(i)); echo Si
end endif
if (Sa ==Sb) echo “a and b are equal”
fori=1:10 foreachi(12345678910)
disp([‘The number is - num2str(i)]); echo “The number is Si”
end end

The shell also has a “while” control structure, with the same syntax as MATLAB

If tests

* The shell has a different set of built-in tests
than MATLAB does.
— Missing: inequalities and so on
— Extra: all sorts of tests on files

— You can also make sophisticated tests by stringing
together shell programs with pipes

_ Test | Funcon

-e Sfilename True (1) if the file Sfilename exists
-z Sfilename True (1) if the file Sfilename is zero size

-d Sfilename True (1) if the file Sfilename is a directory

The amazing foreach

 The foreach command executes a loop once
for each element of a list. The list could be a
list of files, or a list of command line
arguments, or a list of sites, ...

* The list can be in a variable or from ‘globbing’:

foreach file (Alaska/[R,r]edoubt*)

if (-d $file) echo “File S$file is a directory”
if (-z $file) echo “File $file is a zero length”
if ($file == “basename $file .dat .dat) \

echo “File Sfile is a data file”

end

The “backtick” and other quotes

The previous example used a command surrounded
by “backticks” ('). This command is evaluated and the
whole thing is then replaced by the result of that
command.

Double quotes are used for strings. If there is a

variable inside the string, the value of the variable will
be used.

Single quotes are like double quotes, except that
variables are not de-referenced.

A single quote inside double quotes, and a double
guote inside single quotes, are just treated as ordinary
characters.

