UNI

IN ANUTSHELL

A Desktop Quick Reference
Covers GNU/Linux, Mac OS X, and Solaris

O’RE"—LYQ Arnold Robbins

Unix Tools 2

OREILLY"

A Quick Pocket Roference for a Lty
Fevry Loy Uver Needs

O'REILLY"

Jobn Bambenek &
Agnieszba Klus

Outline

Remote access: ssh
Variables as a collection of words
Making basic output and input

A sampler of unix tools: text processing, slicing
and dicing

— grep (“get regular expression”)

— awk (a text processing language)

— sed (“stream editor”)

— tr (translator)

A smorgasbord of examples

Access a “remote” machine: ssh

* You can open up a shell to work on any
machine in the world with ssh (secure shell)

— You can even forward the graphics that would be
produced to your screen with X11 forwarding

 Why would you do that?
— Why not? Is only one computer enough for you?

— Process data from home, on the road, the other
building, the next room, etc

— Access stuff/programs that only reside on the big
server

Using ssh

ssh [options] user@host [command]

— [options] use —X or =Y to forward graphics via X11
if your machine can display them
* Unix, linux, MacOSX: yes; Windows, ?7?

— With no command specified, you get an
interactive shell. Otherwise, the command is run

Example:
— ssh —X jeff@denali.gps.alaska.edu
In the old days, there were some other

options, like rsh and telnet, but security is
needed these days...

Variables as a collection of words

* The shell treats variables as a collection of
words

— set files = (filel file2 file3)
— This sets the variable files to have 3 “words”

* |f you want the whole variable, access it with
Sfiles

* |f you want just one word, use Sfiles[2]

* The shell doesn’t count characters, only words

Basic output: echo and cat

* echo string

— Writes a line to standard output containing the

text string. This can be one or more words, and
can include references to variables.

— eC
— eC

— €eC

no “Opening files”
ho “working on week Sweek”

No —n “no carriage return at the end of this”

e cat file
— Sends the contents of a file to standard output

Input, Output, Pipes

e QOutput to file, vs. append to file.
— > filename creates or overwrites the file filename

— >> filename appends output to file filename

* Take input from file, or from “inline input”
— < filename take all input from file filename

— <<STRING take input from the current file, using
all lines until you get to the label STRING (see next
slide for example)

i:
I

Example of “inline input”

. gpsdisp << END

®
| Okmok2002-2010.disp Many programs,

| Okmok2002-2010.vec . especially older ones,
& i interactively prompt
:Okmok2002-2010.gmtvec i .

5 . you to enter input

| Okmok2002-2010.newdisp ' y i i
EOkmok2002_mod.stacov , Ou can automate (Or

' 5 . self-document) this by
- . using <<
:Okmok2010.stacov |

- . * Standard input is set to
15 E . .
76 . the contents of this file
n . between << END and

i END :

END

grep (“get regular expression”)

e grepis a tool that allows you to extract lines from a
file that contain some search pattern.
— Plain text files only, of course!

* The basic usage is: grep string filename
— All lines of the file filename that contain the string string
will be written to standard output.

* You can use multiple filenames, and there are several
options you can use with various flags. One handy
option is —v (invert): grep —v string filename

— All lines of the file filename that do not contain the string
string will be written to standard output.

grep

Examples:

In its simplest form, grep
finds every line in a plain
text file that contains a
certain string.

Its “search string” can be
more than a simple string:
regular expressions

You can include special
characters and wild cards
— A start of line

— Send of line
— . match exactly one character

Find every line with string “AK”
— grep AK city+state_list
A fancier example:

— wget -0 - http://
www.cygwin.com/ | grep
“Windows 98"

Using some wildcards:
— grep "MAB.. " ~/sitevecs

Search for two strings:

— grep AK city+state.list | grep
River

Variants of grep: egrep, etc

There are a number of Example:

variants of grep, which C o _ .
behave a little differently. List all PBO sites in

A useful one is egrep, which Alaska

allows you to use an “OR” — egrep "("AB..|"AC. |
construct to find matches to MAV..)" ~/sitevecs | more
any of two or more strings: ¢ Qutput is:

— egrep “(stringl|string2)” file ABO1 ATKA ISLAND

For compressed files, use ABO2 NIKOLSK]

zgrep, zipgrep, bzgrep
See man fgrep

ABO4 SAVOONGA PBO

awk

awk is an incredibly powerful text processing language (think
food processor)

If you want to get the third word of text from a line, or want

to get the difference between the numbers in the 5" and 6t

columns, divided by the square root of the sum of squares of
the numbers in the first 3 columns, awk is your tool.

Named for its authors: Aho, Weinberger, Kernighan
Use it with pipes to get the full effect!

"AWK is a language for processing files of text. A file is treated as a sequence of
records, and by default each line is a record. Each line is broken up into a sequence
of fields, so we can think of the first word in a line as the first field, the second
word as the second field, and so on. An AWK program is of a sequence of pattern-
action statements. AWK reads the input a line at a time. A line is scanned for each
pattern in the program, and for each pattern that matches, the associated action is
executed." - Alfred V. Aho

awk Principles

Every line is broken up into fields. By default,
whitespace separates fields

awk reads each line in its input file (or standard
input) and does something based on its command
program (a string, or a series of commands in a file)

awk “command string” file(s)

The command string is of the form “pattern {action}”
and you can have many pattern-action pairs
Example: awk ‘NF > 3 {print $4}’' myfile.txt

— What it does: If there are more than 3 fields on a line, print
out the 4t field

Some awk examples

Print the first field of every line
— awk {print S1} myfile.txt
Print every line with two fields
— awk ‘NF == 2 {print SO} myfile.txt
Get the day of the week
— date | awk {print S1}
Do some math
— awk {print S5 “ 7 sqrt(S1*S1 + S2*S2 + S3*S3) S5}
Print the first 4 characters of the second field
— awk {print substr(52,1,4)}
Use the character “:” to separate fields
— awk -F: {print $1 " has the name " S5} /etc/passwd | more

Another awk example

* | have a file allsites.gmt with lines like this:
—159.451212001 54.035486000 KRMS
—-152.148672605 61.260421190 SKID

* My awk command to extract a spatial subset
—awk 'S1>-179 && S1<-130 && S2 > 55 {print SO}’
allsites.gmt

* This outputs every line within the given lat-
long box

awk —F is a wonderful thing

e Extract fields from a .csv file

— If you save an excel file in .csv format, you get a

text file with the cells of the spreadsheet
separated by commas

— awk =F, {print S1 “ has “ S4 “ dollars left.”
* Parse a pathname/filename

— The directory tree in a pathname/filename is
separated by “/” characters

— awk —F/ {print SNFY
— Awk —=F/ ‘NF > 1 {print “pathname contains a /"’}

sed (the stream editor)

e sedis aprogram that lets you do a find-and-replace
process on text files via the command line.
— Simplest form: sed ‘s/string1/string2/g’ filel > file2

 What it does: replace every occurrence of string1 with string2 in
the file file1, sneding output to file2.

* The ‘s’ in the command string is for search/replace

* The ‘g’ at the end means to do it on every match. Without the g it
will change only the first matching string on each line.

— As usual, it can operate on a file or on standard input

* And you can do more as well, beyond the scope of a
first lesson

Making an input file with sed

* Many scientific programs have specific input
files, which might contain the names of files,
values of parameters, etc

set master dir = /home/jeff/taboo
foreach viscosity (1 3 10 30 100 300)
foreach thickness (25 30 35 40 45 50 55 60)
cd ${master dir}
mkdir ${thickness} $viscosity
cat master input | sed s/VISCOSITY/Sviscosity/ \
| sed s/THICKNESS/Sthickness/ \
> Alaska05 ${thickness} S$viscosity/taboo.input
cd Alaska05 ${thickness} S$viscosity
./taboo < taboo.input > taboo.output
end
end

tr

e tris a character-based translator, while sed is a
word-based translator. A common use of tr is
to change uppercase to lowercase text

 Examples
— tr [a-z]’ [A-Z]’ < input > output
— tr ‘[A-Z]’ ‘[a-z]’ < input > output
—tr '’ <input > output
* This last example changes every space to an underscore

Example scripts using these tools

* Several practical examples follow. Most of
these will combine some elements of control
structures, use of variables, and the use of
some unix tools through pipes.

* Some of these may be useful for you to copy.

— If you do, be careful with quotes and such.
Powerpoint uses fancy quotes that look like
typeset text, but the shell only knows plain
guotes.

Syntax: MATLAB vs. tcsh
. wmAmAB | tsh

i =20; seti=20
i=i+1 @i=Si+1
if(a==b) if (Sa ==Sb) then
i=i+1; @i=Si+1
disp(num2str(i)); echo Si
end endif
if (Sa ==Sb) echo “a and b are equal”
fori=1:10 foreachi(12345678910)
disp([‘The number is - num2str(i)]); echo “The number is Si”
end end

The shell also has a “while” control structure, with the same syntax as MATLAB

Processing files from some stations

 Maybe you have a set of files, and you want to
“process” the file from certain stations.

set process list = /home/jeff/stations to process
foreach file (*.dat)
set station = “echo $file | awk ‘{print substr($0,1,4)}’"
if (“grep $station $process list | wec —1° > 0) then
echo “Processing file $file from station Sstation”
process file $file
endif
end

* For this to work, you need to adopt a
systematic naming convention for filenames.

— In this example, the first 4 characters of the
filename must be the station name

Same example, elaborated

* You have already processed some files, so you only
want to process the files you haven’t already done.

— Suppose that the process_file script creates some output
files, so you can test for the existence of these files.

set process list = /home/jeff/stations to process
foreach file (*.dat)

set station = “echo $file | awk ‘{print substr($0,1,4)}’"
if (“grep S$station $process list | wec —=1° > 0) then
set base = "basename $file .dat"
if (! —e $S{base}.jpg) then

echo “Processing file $file from station Sstation”
process file $file
endif
endif
end

Produce an organized list of files

* Suppose you have a set of files named by date and by station.
Example: 10novO8FAIR.dat. Make a list of files for each
station.

— Suppose you wanted a formatted list of every station for each date?

set filespec = ‘*.dat’
set stations = ~/bin/ls $filespec | awk ‘{print substr($0,8,4)}’ \
| sort —u"
foreach station ($stations)
echo “==="
echo —n “Number of files for station S$station : “
/bin/ls ?222??2?2${station}.dat | wc -1
/bin/ls 22222?22?${station}.dat | \
awk ‘{n += 1} {printf(“%3.3i: %s\n”, n, $0)}’
echo
end

Produce an organized list of files

* The output will look something like this:

Number of files for station OK23 : 3
001: 05jul020K23.dat
002: 07jul220K23.dat
003: 10jul280K23.dat

Number of files for station FAIR : 2
001: 99febl2FAIR.dat
002: 03sep30FAIR.dat
003: 10augl9FAIR.dat

