
Beyond the Mouse – A
Short Course on

Programming
11. Backup and Debugging

Solving Major (and minor) Crises

Ronni Grapenthin

Geophysical Institute, University of Alaska
Fairbanks

November 22, 2010 “The Uncomfortable Truths Well”,
http://xkcd.com/568 (April 13, 2009)

1 / 22

Today’s schedule . . .

1 Backup Strategies

2 Debugging

2 / 22

Today’s schedule

1 Backup Strategies

2 Debugging

3 / 22

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, houses
burn down, etc.

General strategies

Episodically create a physical copy on a medium different from
primary hard drive (e.g. usb drive).
Use one of the gazillion tools that help you with this.
We’ll concentrate on rsync

Whatever method you choose, make sure the files can indeed be
recovered (i.e. test the backup)

4 / 22

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, houses
burn down, etc.

General strategies
Episodically create a physical copy on a medium different from
primary hard drive (e.g. usb drive).

Use one of the gazillion tools that help you with this.
We’ll concentrate on rsync

Whatever method you choose, make sure the files can indeed be
recovered (i.e. test the backup)

4 / 22

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, houses
burn down, etc.

General strategies
Episodically create a physical copy on a medium different from
primary hard drive (e.g. usb drive).
Use one of the gazillion tools that help you with this.

We’ll concentrate on rsync

Whatever method you choose, make sure the files can indeed be
recovered (i.e. test the backup)

4 / 22

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, houses
burn down, etc.

General strategies
Episodically create a physical copy on a medium different from
primary hard drive (e.g. usb drive).
Use one of the gazillion tools that help you with this.
We’ll concentrate on rsync

Whatever method you choose, make sure the files can indeed be
recovered (i.e. test the backup)

4 / 22

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, houses
burn down, etc.

General strategies
Episodically create a physical copy on a medium different from
primary hard drive (e.g. usb drive).
Use one of the gazillion tools that help you with this.
We’ll concentrate on rsync

Whatever method you choose, make sure the files can indeed be
recovered (i.e. test the backup)

4 / 22

rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local : rsync [OPTION . . .] SRC . . . [DEST]

Access v ia remote s h e l l :
P u l l : rsync [OPTION . . .] [USER@]HOST:SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST:DEST

Access v ia rsync daemon :
P u l l : rsync [OPTION . . .] [USER@]HOST: :SRC . . . [DEST]

rsync [OPTION . . .] rsync : / / [USER@]HOST[:PORT] /SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST: : DEST

rsync [OPTION . . .] SRC . . . rsync : / / [USER@]HOST[:PORT] / DEST

Usages wi th j u s t one SRC arg and no DEST arg w i l l l i s t the source
f i l e s ins tead of copying .

If any of the files to copy already exist, rsync sends only the
differences.
-avz transfer in “archive” mode: ensures that symbolic links,
permissions, etc. are preserved. Compression is used to reduce
the size of data portions.

5 / 22

rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local : rsync [OPTION . . .] SRC . . . [DEST]

Access v ia remote s h e l l :
P u l l : rsync [OPTION . . .] [USER@]HOST:SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST:DEST

Access v ia rsync daemon :
P u l l : rsync [OPTION . . .] [USER@]HOST: :SRC . . . [DEST]

rsync [OPTION . . .] rsync : / / [USER@]HOST[:PORT] /SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST: : DEST

rsync [OPTION . . .] SRC . . . rsync : / / [USER@]HOST[:PORT] / DEST

Usages wi th j u s t one SRC arg and no DEST arg w i l l l i s t the source
f i l e s ins tead of copying .

If any of the files to copy already exist, rsync sends only the
differences.

-avz transfer in “archive” mode: ensures that symbolic links,
permissions, etc. are preserved. Compression is used to reduce
the size of data portions.

5 / 22

rsync: a fast, versatile, remote (and local)
file-copying tool

Command line syntax (see man page!)

Local : rsync [OPTION . . .] SRC . . . [DEST]

Access v ia remote s h e l l :
P u l l : rsync [OPTION . . .] [USER@]HOST:SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST:DEST

Access v ia rsync daemon :
P u l l : rsync [OPTION . . .] [USER@]HOST: :SRC . . . [DEST]

rsync [OPTION . . .] rsync : / / [USER@]HOST[:PORT] /SRC . . . [DEST]
Push : rsync [OPTION . . .] SRC . . . [USER@]HOST: : DEST

rsync [OPTION . . .] SRC . . . rsync : / / [USER@]HOST[:PORT] / DEST

Usages wi th j u s t one SRC arg and no DEST arg w i l l l i s t the source
f i l e s ins tead of copying .

If any of the files to copy already exist, rsync sends only the
differences.
-avz transfer in “archive” mode: ensures that symbolic links,
permissions, etc. are preserved. Compression is used to reduce
the size of data portions.

5 / 22

rsync: example – my backup solution

! / b in / csh
arch ives l i s t o f f o l d e r s to / media / backup

#backup des t i na t i on , ex te rna l HDD
set BACKUP = / media / backup

i f d isk doesn ’ t ex i s t , we ’ ve got to mount i t
i f !(−e $BACKUP/ eolan) then

echo "No backup d isk ! Try ing to mount ex te rna l d isk to / media / backup . "
mntbackup

end i f

#check whether my remote f o l d e r s are mounted
i f !(−e ~/ t i n t i n a / p r o j e c t s) then

echo "LAB not mounted . . . do t h a t now ! "
m n t t i n t i n a

end i f

#DO IT !
echo " S t a r t i n g Backup . . . "
rsync −avz ~ $BACKUP/ eolan / roon

#my p i c t u r e s l i v e on a d i f f e r e n t HDD, check whether
#backup poss ib le and do i t .
i f (−e / media / d isk / photos) then

rsync −avz / media / d isk / photos $BACKUP/ backup_disk_160
end i f

Listing ∼/bin/backup

6 / 22

Today’s schedule

1 Backup Strategies

2 Debugging

7 / 22

Review: Software Development Cycle

1 Design
2 Coding
3 Test
4 Debugging
5 go back to 1,2, or 3, . . .

8 / 22

What is “debugging”?

Debugging is the art of finding and fixing mistakes in computer
programs. To be successful you need insight, creativity, logic, and
determination.

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

Brian Kernighan

9 / 22

What is “debugging”?

Debugging is the art of finding and fixing mistakes in computer
programs. To be successful you need insight, creativity, logic, and
determination.

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

Brian Kernighan

9 / 22

Truths about bugs and debugging . . .

Bugs are static – they won’t run away.
Often, the problem is simple.
You created the bug! It’s nobody else’s fault - suck it up!
Debugging is a great way to learn being self-critical. Good luck!
Be critical – did you mean ’<’, ’<=’, ’>’, ’>=’?
Don’t panic – be systematic!
Sleep, go for a walk, come back later.

10 / 22

Debugging Styles

echoing: place print statements at useful points in a program
(function entry, exit)
unit testing: write calls to particular function, throw artificial
values at it
exception handling: in high level languages: sources of mistakes
easier to spot
online debuggers: for our purposes not necessary, useful if you
want to step through your code, or for memory problems
version control: have a tool keep track of changes you make; roll
back to bug-free code is simple

11 / 22

Debugging Styles: echoing

. . . we find stepping through a program less productive than
thinking harder and adding output statements and
self-checking code at critical places. Clicking over
statements takes longer than scanning the output of
judiciously-placed displays. It takes less time to decide where
to put print statements than to single-step to the critical
section of code, even assuming we know where that is. More
important, debugging statements stay with the program;
debugging sessions are transient.

From: Brian Kernighan, Rob Pike “The Practice of Programming”

write method that displays text only if a global DEBUG flag is set
find ways to implement such external switches – for SHELL:
environment vars, Matlab: create your own preferences
call this method whenever necessary: entry, exit of functions, to
display certain values, to follow the program flow, . . .

12 / 22

Debugging Styles: echoing

. . . we find stepping through a program less productive than
thinking harder and adding output statements and
self-checking code at critical places. Clicking over
statements takes longer than scanning the output of
judiciously-placed displays. It takes less time to decide where
to put print statements than to single-step to the critical
section of code, even assuming we know where that is. More
important, debugging statements stay with the program;
debugging sessions are transient.

From: Brian Kernighan, Rob Pike “The Practice of Programming”

write method that displays text only if a global DEBUG flag is set
find ways to implement such external switches – for SHELL:
environment vars, Matlab: create your own preferences
call this method whenever necessary: entry, exit of functions, to
display certain values, to follow the program flow, . . .

12 / 22

Debugging Styles: echoing

. . . see t_debug demo . . .

13 / 22

Debugging Styles: unit testing

at the simplest: write calls to your functions with artificial values
execute these calls at the beginning of your code, check function
results
this helps to detect errors due to changes in functions immediately
also: assertion that function works for tested TYPES
can be done for any language (some languages come with fancy
frameworks)

14 / 22

Debugging Styles: exception handling

Full exception handling support in Matlab:

Matlab – try-catch

% t ry , STATEMENT, catch ME, STATEMENT, end .
%
% EXAMPLE: f i l e opening
clc ;
t r y

f i d = fopen (’ whatever . t x t ’ , ’ r ’) ; % open a non−e x i s t i n g f i l e
data = fread (f i d) ; % now t r y to get i t s data

catch myException % any name f o r e r r o r message ob jec t
%l e t the user know , implement g race fu l program te rm ina t i on . . .
disp (myException) ; % disp lay f u l l e r r o r ob jec t
disp (myException . message) ; % actua l message i s more access ib le
disp (myException . s tack) ; % where d id th ings occur?

end

disp (’−−−−−−−> We do get here ! ’)

%now wi thou t t r y−catch . . .
f i d = fopen (’ whatever . t x t ’ , ’ r ’) ;
data = fread (f i d) ;

disp (’We cannot get here ! ’)

15 / 22

Debugging Styles: version control

Full exception handling support in Matlab:

Matlab – try-catch

% t ry , STATEMENT, catch ME, STATEMENT, end .
%
% EXAMPLE: f i l e opening
clc ;
t r y

f i d = fopen (’ whatever . t x t ’ , ’ r ’) ; % open a non−e x i s t i n g f i l e
data = fread (f i d) ; % now t r y to get i t s data

catch myException % any name f o r e r r o r message ob jec t
%l e t the user know , implement g race fu l program te rm ina t i on . . .
disp (myException) ; % disp lay f u l l e r r o r ob jec t
disp (myException . message) ; % actua l message i s more access ib le
disp (myException . s tack) ; % where d id th ings occur?

end

disp (’−−−−−−−> We do get here ! ’)

%now wi thou t t r y−catch . . .
f i d = fopen (’ whatever . t x t ’ , ’ r ’) ;
data = fread (f i d) ;

disp (’We cannot get here ! ’)

16 / 22

Version control (with subversion)

What is ‘version control’?
“Version control is the art of managing changes to information.”
(svnbook)

a fileserver that remembers every change ever written to it.
traditionally used by programmers: change little bits of code on
one day only to undo it the next day.
well, that’s just what we do with papers, theses, . . .

What is ‘version control’ NOT?
NOT a backup: creates value (history, log entries, . . .)
Backup your repository every now and then.

What can be under version control?
Depends on tool: CVS – only text files, subversion – text and binary
files

17 / 22

Version control (with subversion)

What is ‘version control’?
“Version control is the art of managing changes to information.”
(svnbook)

a fileserver that remembers every change ever written to it.
traditionally used by programmers: change little bits of code on
one day only to undo it the next day.
well, that’s just what we do with papers, theses, . . .

What is ‘version control’ NOT?
NOT a backup: creates value (history, log entries, . . .)
Backup your repository every now and then.

What can be under version control?
Depends on tool: CVS – only text files, subversion – text and binary
files

17 / 22

Version control (with subversion)

What is ‘version control’?
“Version control is the art of managing changes to information.”
(svnbook)

a fileserver that remembers every change ever written to it.
traditionally used by programmers: change little bits of code on
one day only to undo it the next day.
well, that’s just what we do with papers, theses, . . .

What is ‘version control’ NOT?
NOT a backup: creates value (history, log entries, . . .)
Backup your repository every now and then.

What can be under version control?
Depends on tool: CVS – only text files, subversion – text and binary
files

17 / 22

How it works

REPOSITORY

(data center)

remote or local,

memorizes changes

on write

Client 1 Client 2

reads recent or

older version

writes

$> svnadmin

$> svn

18 / 22

Creating/managing a repository: svnadmin, svn

svnadmin Command line syntax
usage: svnadmin SUBCOMMAND REPO_PATH [ARGS & OPTIONS
...]
Type ’svnadmin help <subcommand>’ for help on a specific
subcommand.
subcommands: many! Type ’svnadmin help’ to see them

svn Command line syntax
usage: svn <subcommand> [options] [args]
Type ’svn help <subcommand>’ for help on a specific
subcommand.
subcommands: even more! Type ’svn help’ to see them

19 / 22

Creating/managing a repository: svnadmin, svn

svnadmin Command line syntax
usage: svnadmin SUBCOMMAND REPO_PATH [ARGS & OPTIONS
...]
Type ’svnadmin help <subcommand>’ for help on a specific
subcommand.
subcommands: many! Type ’svnadmin help’ to see them

svn Command line syntax
usage: svn <subcommand> [options] [args]
Type ’svn help <subcommand>’ for help on a specific
subcommand.
subcommands: even more! Type ’svn help’ to see them

19 / 22

Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)
$> svnadmin create --fs-type fsfs $PWD/repos

Preparing your project (repository layout):
$> mkdir my_project
$> cd my_project
$> mkdir trunk branches tags
$> mv <project-files> trunk

Putting your stuff under version control
$> svn import my_project \
file:///$PWD/repos/my_project

20 / 22

Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)
$> svnadmin create --fs-type fsfs $PWD/repos

Preparing your project (repository layout):
$> mkdir my_project
$> cd my_project
$> mkdir trunk branches tags
$> mv <project-files> trunk

Putting your stuff under version control
$> svn import my_project \
file:///$PWD/repos/my_project

20 / 22

Creating/managing a repository: svnadmin, svn

Repository creation (in your current directory)
$> svnadmin create --fs-type fsfs $PWD/repos

Preparing your project (repository layout):
$> mkdir my_project
$> cd my_project
$> mkdir trunk branches tags
$> mv <project-files> trunk

Putting your stuff under version control
$> svn import my_project \
file:///$PWD/repos/my_project

20 / 22

Creating/managing a repository: svnadmin, svn

Your work is now in the repository, get your local copy!
$> mv my_project my_project_old
$> svn checkout file:///$PWD/repos/my_project/trunk
\
my_project

Work cycle
$> svn update
edit files locally
$> svn commit

21 / 22

Creating/managing a repository: svnadmin, svn

Your work is now in the repository, get your local copy!
$> mv my_project my_project_old
$> svn checkout file:///$PWD/repos/my_project/trunk
\
my_project

Work cycle
$> svn update
edit files locally
$> svn commit

21 / 22

Creating/managing a repository: svnadmin, svn

Log of a session (local repository):

eolan : ~ / . . / 0 7 _unix_too ls2 > svnadmin create −−fs−type f s f s $PWD/ repos
eolan : ~ / . . / 0 7 _unix_too ls2 > l s repos
conf db format hooks locks README. t x t
eolan : ~ / . . / 0 7 _unix_too ls2 > mkdir BTM
eolan : ~ / . . / 0 7 _unix_too ls2 > mkdir BTM/ t runk BTM/ tags BTM/ branches
eolan : ~ / . . / 0 7 _unix_too ls2 > cp . . / . . / beyond_the_mouse /∗ . /BTM/ t runk /
eolan : ~ / . . / 0 7 _unix_too ls2 > l s BTM/ t runk /
01_th ink ing_programs . aux 02_fundamentals . pdf . . .
eolan : ~ / . . / 0 7 _unix_too ls2 > svn impor t BTM f i l e : / / / $PWD/ repos /BTM −m " i n i t i a l impor t "
Adding BTM/ t runk
. . .
Committed r e v i s i o n 1 .
eolan : ~ / . . / 0 7 _unix_too ls2 > mv BTM BTM_old
eolan : ~ / . . / 0 7 _unix_too ls2 > svn checkout f i l e : / / / $PWD/ repos /BTM/ t runk BTM
A BTM/04 _fundamentals . snm
. . .
Checked out r e v i s i o n 3 .

remote repositoy: ssh into server, use svnadmin as shown above
svn import my_project svn+ssh://user@server/repos/my_project

svn checkout svn+ssh://user@server/repos/my_project/trunk my_project

22 / 22

Creating/managing a repository: svnadmin, svn

Log of a session (local repository):

eolan : ~ / . . / 0 7 _unix_too ls2 > svnadmin create −−fs−type f s f s $PWD/ repos
eolan : ~ / . . / 0 7 _unix_too ls2 > l s repos
conf db format hooks locks README. t x t
eolan : ~ / . . / 0 7 _unix_too ls2 > mkdir BTM
eolan : ~ / . . / 0 7 _unix_too ls2 > mkdir BTM/ t runk BTM/ tags BTM/ branches
eolan : ~ / . . / 0 7 _unix_too ls2 > cp . . / . . / beyond_the_mouse /∗ . /BTM/ t runk /
eolan : ~ / . . / 0 7 _unix_too ls2 > l s BTM/ t runk /
01_th ink ing_programs . aux 02_fundamentals . pdf . . .
eolan : ~ / . . / 0 7 _unix_too ls2 > svn impor t BTM f i l e : / / / $PWD/ repos /BTM −m " i n i t i a l impor t "
Adding BTM/ t runk
. . .
Committed r e v i s i o n 1 .
eolan : ~ / . . / 0 7 _unix_too ls2 > mv BTM BTM_old
eolan : ~ / . . / 0 7 _unix_too ls2 > svn checkout f i l e : / / / $PWD/ repos /BTM/ t runk BTM
A BTM/04 _fundamentals . snm
. . .
Checked out r e v i s i o n 3 .

remote repositoy: ssh into server, use svnadmin as shown above
svn import my_project svn+ssh://user@server/repos/my_project

svn checkout svn+ssh://user@server/repos/my_project/trunk my_project

22 / 22

	Backup Strategies
	Debugging

