

Generic Mapping Tools or Gravity, Magnetics and Topography

Lecture \# 2
Gridding, Data Analysis, and Processing

Data Processing

sampleld Resampling of I-D data

- filterId Filter I-D data (time series)
- fitcircle Finds best-fitting great or small circles
- grdtrend Fits polynomial trends to grdfiles $(z=f(x, y))$
- trendId Fits polynomial or Fourier trends to $y=f(x)$ series
- trend2d Fits polynomial trends to $z=f(x, y)$ series

Filtering

-F Sets the filter type. Choose among convolution and non-convolution filters. Append the filter code followed by the full filter width in same units as time column. Available convolution filters are:
(b) Boxcar: All weights are equal.
(c) Cosine Arch: Weights follow a cosine arch curve.
(g) Gaussian: Weights are given by the Gaussian function.
(f) Custom: Instead of width give name of a one-column file with your own weight coefficients.
Non-convolution filters are:
(m) Median: Returns median value.
(p) Maximum likelihood probability (a mode estimator): Return modal value. If more than one mode is found we return their average value. Append - or + to the filter width if you rather want to

Gaussian Filter

Seattle Tides CG Dock

Median Filter


```
#!/bin/csh
# set plotting parameters
set databox = -R0/48/2/6
set scale = -JX9.0i/6.0i
# scale data from timetags to time (hours)
# input format
# 09+019:00:00:00.0000 2.844
# 09+019:00:06:00.0000 2.815
# 09+019:00:12:00.0000 2.780
cat tide.d* | awk '{hour = substr($I,8,2); minute = substr($I,II,2); second = substr($I,I3,2); time = hour+(minute + second/60)/60; if (NR > | && time < old_time+0)
{addhour += 24;} printf"%.2f %.3fln",time+addhour,$2; old_time=time;}' > hold.data
# plot unfiltered data
cat hold.data | psxy $databox $scale -WI0/I25 -Bgla4:hours:/gla2:meters:.."Seattle Tides CG Dock":WeSn -K > filteredI.ps
# plot median (30 minute or half hour) filtered data
cat hold.data | filterld -Fm0.5 -E | psxy $databox $scale -W5/|25/250/I25 -Bgla2 -K -O >> filtered|.ps
# plot median then Gaussian (30 minute or half hour) filtered data
cat hold.data | filter Id -Fm0.5 -E | filter Id -Fg4 -E | psxy $databox $scale -W5/250/|25/250 -Bgla2 -O >> filteredI.ps
# new plot; plot raw data
cat hold.data | psxy $databox $scale -WI0/I25 -Bgla4:hours:/gla2:meters:.."Seattle Tides CG Dock":WeSn -K > filtered2.ps
# plot gaussian (0.5, I, 2, 4 hour filter lengths).
cat hold.data | filterld -Fg0.5 -E | psxy $databox $scale -W5/I25/250/I25 -Bgla2 -K -O >> filtered2.ps
cat hold.data | filterld -Fgl -E | psxy $databox $scale -W5/250/I25/I25 -Bgla2 -K -O >> filtered2.ps
cat hold.data | filterld -Fg2 -E | psxy $databox $scale -W5/I25/I25/250 -Bgla2 -K -O >> filtered2.ps
cat hold.data | filter Id -Fg4 -E | psxy $databox $scale -W5/250/I25/250 -Bgla2 -O >> filtered2.ps
```


Data Processing
 Gravity Example

The basic problem is to join a number of data files, containing bathymetry, raw gravity and navigation data, to reduce the gravity values and estimate anomalies along track.

Why Grid?

- Regular"data" spacing
- Easy to contour
- Amenable to quantitative analysis
- A consistent representation

How grid?

- Combine irregularly sampled data sets from different events
- Ensure same scaling
- Minimize noise
- Recognize grid resolution limits

Problems

- Poor meta-data (scaling issues)
- Crappy data
- Over and under sampling
- Best interpolant?

Eurasia Basin
 Sampling issues

Canada Basin Trackline artifacts

More data better?

More data better?

More data better?

More data better?

Minimum Curvature vs New Data

I-D Interpolation

Splines in Tension

Broken Ridge

Gridding Programs

- blockmean L2 (x,y,z) data filter/decimator
- blockmedian LI (x,y,z) data filter/decimator
- blockmode Mode-estimating (x, y, z) data filter/decimator
- greenspline Gridding using Green's function splines
- nearneighbor Nearest-neighbor gridding scheme
- surface Continuous curvature gridding algorithm
- triangulate Perform optimal Delauney triangulation on xyz data

Workflow

- Decide!
- Select data (probably not everything)
- Pre-process data (scaling, get rid of the garbage, NaN)
- Block process it to reduce aliasing
- Grid it (set parameters)
- Plot it

Parameters

- Surface [xyzfile] -Goutputfile.grd
- -Ixinc/yinc
- -Rwestleast/south/north[r]
- -Cconvergence_limit
- -LIlower -Luupper
- -Nmax_iterations
- - \mathbf{Q}
- -Ssearch_radius
- -Ttension_factor
- -Zover-relaxation_factor

Grid Manipulations

grd2cpt Make color palette table from grdfile grdfilter Filter 2-D data in space domain

- grdsample Resample a 2-D gridded data onto new grid
- grdtrack Sampling of 2-D data along I-D track
grdblend Blend several gridded data sets into one grdclip Limit the z-range in gridded data sets
grdedit Modify grd header information
- grdfft Operate on grdfiles in frequency domain
- grdgradient Compute directional gradient from grdfiles
- grdhisteq Histogram equalization for grdfiles
- grdlandmask Creates mask grdfile from coastline database
- grdmask Set nodes outside a clip path to a constant
- grdmath Reverse Polish calculator for grdfiles

NETCDF Grids (Network Common Data Form)

a set of software libraries and self-describing, machineindependent data formats
supports the creation, access, and sharing of array-oriented scientific data.

Characteristics

- Data should be self-describing, without external tables needed for interpretation.
- Conventions should be developed only as needed, rather than anticipating possible needs.
- Conventions should not be onerous to use for either data-writers or data-readers.
- Metadata should be readable by humans as well as interpretable by programs.
- Redundancy should be avoided to prevent inconsistencies when writing data
- Data provenance: title, institution, contact, source (e.g. model), history (audit trail of operations), references, comment
- Description of associated activity: project, experiment
- Description of data: units, standard_name, long_name, auxiliary_variables, missing_value, valid_range, flag_values, flag_meanings
- Description of coordinates: coordinates, bounds, grid_mapping (with formula_terms); time specified with reference_time ("time since T0") and calendar attributes.
- Meaning of grid cells: cell_methods, cell_measures, and climatological statistics.

Other grid functions

- gmt2rgb Convert Sun raster or grdfile to red, green, blue component grids
- gmtconvert Convert table data from one format to another
- gmtmath Reverse Polish calculator for table data
- gmtselect Select table subsets based on multiple spatial criteria
- grd2xyz Convert 2-D gridded data to table
- grdcut Cut a sub-region from a grd file
- grdpaste Paste together grdfiles along common edge
- grdreformat Convert from one grdformat to another
- splitxyz Split xyz files into several segments
- xyz2grd Convert table to 2-D grd file

