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Plumes - Densities

Sparks et al., 1997
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Density Variations in Eruptive Mix

Density of mixture (β) given by:

1
β

=
1 − n
σ

+
n
ρ

n, ρ: mass fraction & density of gas
σ: density of pyroclasts
assume gas phase behaves as perfect gas:

ρ =
P

RT

P,T : pressure & Temperature of mixture
R: gas constant, average if gaseous components: air=285 Jkg−1K−1,
CO2 = 185Jkg−1K−1, water vapor=460Jkg−1K−1
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Density Variations in Eruptive Mix

Sparks et al., 1997

Density of mixture (entrained air, pyroclasts, volatiles) function of
entrained air; three eruption temperatures given in Kelvin & constant
water 3%
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Density Variations in Eruptive Mix

Sparks et al., 1997

entrainment coefficients: jet ≈ 0.06; buoyant plume ≈ 0.09 (more
efficient; other models exist)

5 / 25



Density & Temperature Variations

• initial radius: 50 m
• initial velocity: 100 m /s
• eruption temperature:

1000 K
• initial mixtures 3%

water (mass fraction)

Sparks et al., 1997
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Velocities vs. Vent Radii

Sparks et al., 1997
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Eruption Regimes: Velocities vs. Vent Radii

Sparks et al., 1997

Solid curves are labeled with initial mass fraction of water
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Humidity - Vapor entrainment

Sparks et al., 1997

Solid curves are labeled with different relative humidities
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Jet Rise Heights - Vapor entrainment

Sparks et al., 1997

10 m vent diameter with 100 m/s initial velocity, curves for different
particle radii in meters 10 / 25



What’s the major difference? R. Grapenthin
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What’s the major difference? R. Grapenthin
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Sedimentation from Volcanic Plumes

board work.
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Sedimentation Model

Sparks et al., 1997
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Particle Settling

Sparks et al., 1997

Sparks et al., 1997

• Reynold’s number indicates turbidity of flow

• ratio of inertial force (Fi , enhances turbulence) to
viscous force (Fv , suppresses turbulence)

• Re = Fi/Fv = Vt d
ν

• d particle diameter, Vt terminal velocity, ν fluid
kinematic viscosity (dynamic viscosity / density)
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Particle Settling - Terminal Velocity

Sparks et al., 1997

• Terminal velocity: Vt =
(

4
3

d(σ−ρ)g
Cdρ

)
• σ particle density, ρ ambient fluid

density (negligible), g acc gravity, CD

drag coeff

• particles are irregular, introduce
shape factor F to determine drag:

• F = (bp + cp)/2ap with ap > bp > cp

principal axes of particle

• CD = 24
Re F−0.32 + 2

√
1.07− F
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Particle Settling - Advection / Diffusion modeling

Sparks et al., 1997

• allow particles to be
advected and dispersed in
turbulent wind field, 2nd
order PDE

• depends on initial
concentration of particles in
grain size class,

• depends on eddy diffusivity
for atmosphere
(non-homogeneous)

• depends on changes in
source over time
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What’s going on & how could this happen?

Sparks et al., 1997
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Particle Aggregation

• aggregation of fine ash critical in particle dispersal
• aggregates fall with higher velocity than components (fall out

sooner)
• complex grain size distributions
• enhanced thickening of fall deposits
• humidity of plume dictates growth mechanism (dry, accretionary

lapilli, mud rain)
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Anomalous Deposit Thicknesses

Sparks et al., 1997
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Particle Size Distributions

Sparks et al., 1997

polymodal grain size distribution due to deposition of fine material controlled by
aggregation
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Dry Aggregates

Sparks et al., 1997

Observed at Sakurajima when ground humidity < 80%
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Accretionary Lapilli

Sparks et al., 1997

Observed at Sakurajima when ground humidity > 80%
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Accretionary Lapilli

Sparks et al., 1997

Observed at Sakurajima when ground humidity > 80%
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Mud Rain

Sparks et al., 1997
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Particle Aggregation

Sparks et al., 1997

26 / 25


