Caldera-forming eruptions

Matthew Zimmerer – matthew.zimmerer@nmt.edu - Bureau 329

What is Magma?

What is Magma?

Magma: naturally occurring, fully or partially molten rock material generated within a planetary body, consisting of melt with or without crystals and gas bubbles and containing a high enough proportion of melt to be capable of intrusion and extrusion.

2 component phase diagram

Decompression Melting

Flux Melting Of the Mantle

Magma Differentiation

What is differentiation?

Magma Differentiation

Processes that change the composition of a magma

Magma Differentiation

- 1 Crystal Fractionation
- 2 Magma Mixing
- 3 Assimilation
- 4 Partial Melting

Crystal Fractionation

Crystal Fractionation

Crystal Settling – Locally important, but probably not a large-scale mechanism for silicic magmas

Crystal Mush Model for Fractionation

At 40-60% crystals, the crystal mush becomes "locked" and is no longer stirring

Crystal Mush Model for Fractionation

At 40-60% crystals, the crystal mush becomes "locked" and is no longer stirring

Crystal Mush Model for Fractionation

Fig. 4. Bulk rock and matrix glass compositions of CP and CR ignimbrites as a function of DRE erupted volume. (A) CR data; yellow squares show matrix glass, orange bars show bulk compositional range. (B) CP data; blue circles show matrix glass composition of earliest erupted magma, blue bars show bulk compositional range. Data sources are listed in Table S1.

Deep processes

Magma differentiation processes:

- Partial melting of protolith (fertile vs. refractory) by basalt intrusions
 - •H₂O-poor, high viscosity
 - Presence/absence of hydrous minerals
 - Dehydration melting
 - Peraluminous liquids produced
- Remelting of earlier intrusions by later basalt injections
- Fractional crystallization of hydrous basalt (potentially lots of H₂O, low viscosity)

Think about:

- Combinations of the above
- Differences in physical properties and rheology of the liquids produced
- Chemical and isotopic signatures

Crater Lake caldera – Magma zonation

Late Erupted - Dacite

Early Erupted - Rhyolite

Why did the eruption stop?

Crater Lake caldera – Magma zonation

Early Erupted - Rhyolite

-----Change in viscosity & crystal content------

Late Erupted - Dacite

Why did the eruption stop?

Lipman et al., 1978

Components and emplacement of caldera-forming eruptions

Components in eruptive plume?

Pyroclastic Deposits

Fall Deposits

Surge Deposits

Flow Deposits

FIGURE 3 Plots of In T versus \sqrt{A} . (a) Plot of proximal thinning relationships for representative hawaiian/strombolian (solid circles), subplinian (solid triangles), and plinian/phreatoplinian (open squares) tephras. (b) Similar plot at expanded scale for the plinian (open triangles; solid line) and phreatoplinian (solid circles; dashed line) units.

- 1 Mantle topography (just like snow)
- 2 Individual deposits are well sorted
- 3 Graded beds (changing in wind direction, eruption intensity)

Plume Collapse and Pyroclastic Density Currents (PDCs)

Small volume – postcaldera domes

Small volume – postcaldera domes

Low eruption rate

Most relevant to large calderas

Pyroclastic Density Currents (Surge and Flow)

surge

flow

Pyroclastic Density Currents (Surge and Flow)

SURGE

- Dilute (gas >> particles)
- Turbulent Flow
- Small-volume

FLOW

- Concentrated (solids >> fluid)
- ~Laminar Flow
- Large-volume

Pyroclastic Surges

Cross-bedding

Dunes

Well to moderately sorted (less than fall; more than flow)

Thin to thick beds

Volumetrically Minor

Pyroclastic Surges

Pyroclastic flows (ignimbrite)

Pyroclastic flows (ignimbrite)

Bedded to Massive

Poorly sorted

Graded

Large grain size distribution (< 1 mm as to >>1 m blocks)

Emplaced into topographic lows "flows follows lows"

Layer 2b -

Graded
(lithics on sink
and pumice floats

Lithics "sink"

Pumice "floats"

Ignimbrite Distribution

Welding of Ignimbrites

Welding of Ignimbrites

Rheomorphic flow of ignimbrite

Ductile flow after emplacement

Welding and Devitrication Zones within Ignimbrites

