#### ERTH 456 / GEOL 556 Volcanology

#### – Lecture 09: Magma Chemistry–

Ronni Grapenthin rg@nmt.edu MSEC 356, x5924 hours: M 4-5PM, R 3-4PM or appt.

September 26, 2018

## What is magma?

Mixture of:

- melt (liquid rock)
- crystals (solids)
- volatiles (gases)

- Major elements >1 wt% of rock
- Minor elements between 1-0.1 wt% of rock
- Trace elements <0.1 wt%</li>

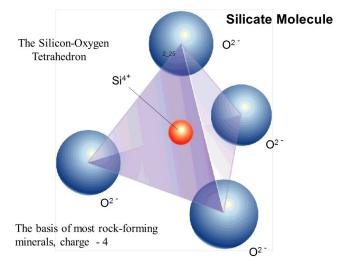
- Oxygen (O)
- Silicon (Si)
- Aluminum (Al)
- Calcium (Ca), Potassium (K), Sodium (Na), Iron (Fe), Titanium (Ti), Magnesium (Mg)
- Hydrogen (H), Sulfur(S), Chloride (Cl), Fluorine (F)

- · Elements exist as electrically charged ions in magma
- most as positively charged cations with charges from +1 ... +4
- Oxygen negatively charged anion -2
- Having both cations and anions results in molecule formation (electrically neutral, oxides)

- · Elements exist as electrically charged ions in magma
- most as positively charged cations with charges from +1 ... +4
- Oxygen negatively charged anion -2
- Having both cations and anions results in molecule formation (electrically neutral, oxides)

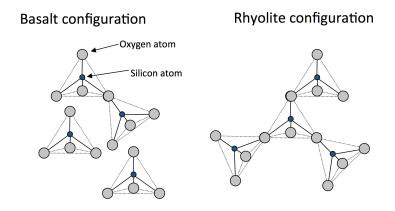
Examples:

- Silicon: +4 charge, bonds with 2 oxygens: SiO<sub>2</sub>
- Magnesium: +2 charge, bonds with 1 oxygen: MgO
- Aluminum: +3 charge, 2 Al bond with 3 O: Al<sub>2</sub>O<sub>3</sub>


#### **Example Compositions**

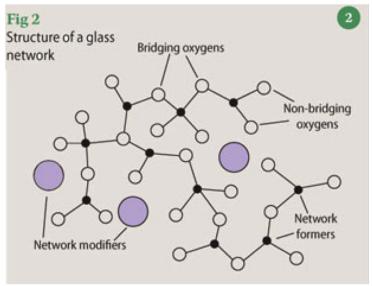
| Compound                       | Rhyolite (wt%) | Basalt (wt%) |
|--------------------------------|----------------|--------------|
| SiO <sub>2</sub>               | 73.2           | 49.2         |
| TiO <sub>2</sub>               | 0.2            | 2.3          |
| Al <sub>2</sub> O <sub>3</sub> | 14.0           | 13.3         |
| FeO                            | 1.8            | 12.0         |
| MgO                            | 0.4            | 10.4         |
| CaO                            | 1.3            | 10.9         |
| Na <sub>2</sub> O              | 3.9            | 2.2          |
| K <sub>2</sub> O               | 4.1            | 0.5          |
| P <sub>2</sub> O <sub>5</sub>  | 0.1            | 0.2          |

N. Dunbar


#### In melt ... Silica Tetrahedron

#### Silica as SiO<sub>4</sub> anion with -4 charge in tetrahedron form:



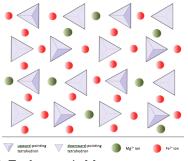

hydrasystemsllc.com

#### In melt ... Polymerization



N. Dunbar

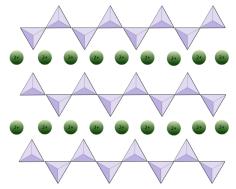
#### In melt ... Polymerization




http://www.rsc.org/images/Coleman-fig2\_tcm18-68268.jpg

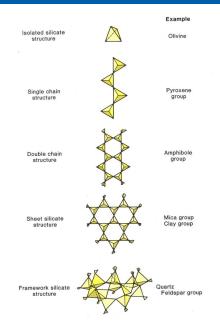
### In minerals ... Olivine

The -4 charge of the Silicon Molecule must be balanced when forming minerals:


- Two +2 cations (Magnesium, Iron close in radius)  $Mg_2SiO_4$ ,  $Fe_2SiO_4$ , or  $(Mg,Fe)_2SiO_4$
- silica tetrahedra not bonded to each other (opposed to most silicate minerals)



3 Fe for each Mg, https://opentextbc.ca/geology/chapter/2-4-silicate-minerals/

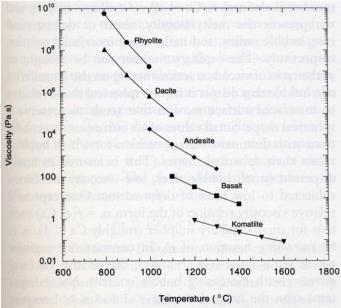

#### In minerals ... Pyroxene

- Silica tetrahedra linked in single chains,
- one oxygen ion shared between neighboring tetrahedra
- fewer oxygen in the structure, lower oxygen to silicon ratio (3:1, instead of 4:1 in olivine)



 $e.g.,\ MgSiO_3\ {\it https://opentextbc.ca/geology/chapter/2-4-silicate-minerals/}$ 

#### Silica Polymer Structures




### Viscosity

| Material                       | Viscosity (Pa s)         | Wt% SiO <sub>2</sub> | Temp. (°C) |
|--------------------------------|--------------------------|----------------------|------------|
| Water                          | $1.002 \times 10^{-3}$   |                      | 20         |
| ASE 30 motor oil               | $2 \times 10^{-1}$       | -                    | 20         |
| Kimberlite                     | $10^{-1} - 1$            | 30-35                | ~1000      |
| Komatiite                      | $10^{-1} - 10$           | 40-45                | 1400       |
| Ketchup                        | ~5 × 10                  | -Liboobrad           | 20         |
| Basalt                         | $10 - 10^2$              | 45-52                | 1200       |
| Peanut butter                  | $-2.5 \times 10^{2}$     | -                    | 20         |
| Crisco <sup>®</sup> shortening | $2 \times 10^{3}$        | - CHINESTERS ACTO    | 20         |
| Andesite                       | $\sim 3.5 \times 10^{3}$ | ~58-62               | 1200       |
| Silly Putty <sup>®</sup>       | ~10 <sup>4</sup>         |                      |            |
| Tonalite 6% H <sub>2</sub> O   | ~10 <sup>4</sup>         | 65                   | 950        |
| Rhyolite                       | ~10 <sup>5</sup>         | ~73-77               | 1200       |
| Granite 6% H <sub>2</sub> O    | ~10 <sup>5</sup>         | 75                   | 750        |
| Rhyolite                       | ~10 <sup>8</sup>         | ~73-77               | 800        |
| Average mantle                 | 10 <sup>21</sup>         | philad lands         | _          |

From Philpotts and Ague, Igneous and Metamorphic Petrology, 2009

### Viscosity



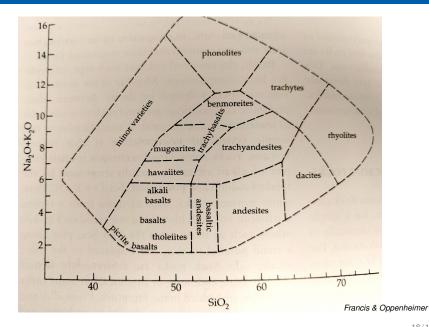
Spera et al., 2000 9

| CLASSIFICATION & FLOW CHARACTERISTICS OF VOLCANIC ROCKS |                 |         |                                               |                                                 |  |
|---------------------------------------------------------|-----------------|---------|-----------------------------------------------|-------------------------------------------------|--|
| Basalt                                                  | Andesite        | Dacite  | Rhyolite                                      | Volcanic rock name                              |  |
| 48-52 %                                                 | 52-63 %         | 63-68 % | 68-77 %                                       | Silica (SiO <sub>2</sub> ) content              |  |
| 1160°C                                                  |                 |         | 900°C                                         | Eruption temperature<br>Lava color scale in °C: |  |
| Low resistance                                          |                 |         | High resistance<br>to flow<br>(thick, sticky) | 1160° 600°                                      |  |
| to flow<br>(thin, runny lava)                           |                 |         |                                               | Mobility of lava flows                          |  |
| Decreasin                                               | g mobility of I | ava —   |                                               |                                                 |  |

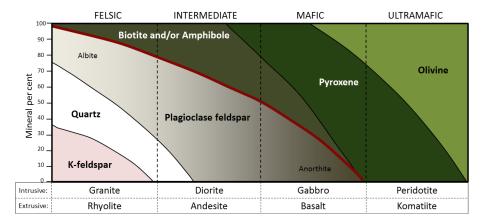
https://www.e-education.psu.edu/geosc30/node/720

# Classification - Fractional Crystallization - Bowen's Reaction Series

## Bowen's Reaction Series


| 1200°C             | Discontinuous Series                                                                                                          | <b>Continuous Series</b>            | Rock Name                   | Light vs<br>Dark* %   | Rock<br>Chemistry                   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|-----------------------|-------------------------------------|
| 1200 C             | Olivine (isolated silica tetrahedra)                                                                                          |                                     | Peridotite (p)              | 100% dark             | Ultramafic                          |
| Decreases          | Pyroxene (double chains)                                                                                                      | Ca plagioclase<br>/ (3D framework)  | Gabbro (p)<br>Basalt (v)    | 80% dark              | 45 wt % SiO <sub>2</sub> —<br>Mafic |
|                    | Hornblende (single chains)                                                                                                    | Na-Ca plagioclase<br>(3D framework) | Diorite (p)<br>Andesite (v) | 50-50 light<br>& dark | 55 wt % SiO <sub>2</sub> —          |
| D <sub>0</sub> 000 | Biotite(sheets) Na-rich plagioclase<br>(3D framework)<br>K-spar (3D framework)<br>Muscovite (sheets)<br>Quartz (3D framework) |                                     | Granite (p)<br>Rhyolite (v) | 60-80%<br>light       | ← 65 wt % SiO₂ ←                    |

\*Light minerals refer to nonferromagnian silicates (do not contain Fe or Mg) which are typically light in color Dark minerals refer to ferromagnisian silicates (contain Fe and Mg) which are typically dark in color


http://geology1403.blogspot.com/2016/10/bowens-reaction-series-relationship.html

- glassy: no crystals found
- aphanitic: crystals too small to see by eye
- phaneritic: minerals are visible by eye
  - fine grained: < 1 mm diameter
  - medium grained: 1-5 mm diameter
  - coarse grained: 5-50 mm diameter
  - very coarse grained: > 50 mm diameter
- porphyritic: bimodal grain size distribution
- pyroclastic: amalgamated igneous fragments

#### **Classification - Composition**



#### **Classification - Simplified Composition**



https://opentextbc.ca/geology/chapter/3-4-classification-of-igneous-rocks/