ERTH 456 / GEOL 556 Volcanology

- Lecture 11: Explosive Eruptions -

Ronni Grapenthin rg@nmt.edu MSEC 356, x5924 hours: M 4-5PM, R 3-4PM or appt.

October 08, 2016

What happens once magma makes it to the surface?

Volcano Anatomy

Gonnermann & Manga, 2007

https://youtu.be/g70vo9ohllI?t=41s

How do we get an explosive eruption?

- fragmentation at top of magma column (don't lose all gases through conduit wall)
- sufficient flow velocity
- vent geometry

USGS, 2016; Framepool, 2011

- volcanic plumes
- pyroclastic fall deposits
- pyroclastic density currents

Makeup of Explosive Eruptions

ISS Crew, 2008

Plume Basics

Francis & Oppenheimer, 2004

 H_B : height of neutral buoyancy; H_T : maximum plume height ($H_T \approx 1.4 H_B$)

Plume Basics - Gas Thrust Region

- magma vesiculates and fragments, accelerates as low viscosity gas+particle mix
- ejection velocity mostly governed by proportion of volatiles
- plinian eruptions of silicic magmas (4-5 wt% volatiles): >500 m/s (supersonic)

Francis & Oppenheimer, 2004

Plume Basics - Gas Thrust Region

- magma vesiculates and fragments, accelerates as low viscosity gas+particle mix
- ejection velocity mostly governed by proportion of volatiles
- plinian eruptions of silicic magmas (4-5 wt% volatiles): >500 m/s (supersonic)
- denser than atmosphere but propelled by momentum
- starts to entrain ambient air: gas thrust/jet phase
- air heated by pyroclasts, reducing bulk density of plume
- up to a few km high

Francis & Oppenheimer, 2004

Plume Basics - Convective Region

- hot gas is buoyant in atmosphere
- convective region owes buoyancy to heating of entrained air
- may lift plume several 10s of kilometers high

Francis & Oppenheimer, 2004

Plume Basics - Convective Region

- hot gas is buoyant in atmosphere
- convective region owes buoyancy to heating of entrained air
- may lift plume several 10s of kilometers high
- can cross tropopause and puncture stratosphere
- ascent rates of 10s-100s m/s
- humid troposphere increases this:
 - condensation of water vapor yields latent heat
 - freezing of liquid water: more latent heat
- plume widens in cross section, density contrast lessens with altitude

Francis & Oppenheimer, 2004

Plume Basics - Umbrella Region

- plume will rise until reaching *H_B*: plume density == atmosphere density
- plume retains momentum, can rise a few kms more to H_T

Francis & Oppenheimer, 2004; Takehiro Koyaguchi;

Plume Basics - Umbrella Region

- plume will rise until reaching *H_B*: plume density == atmosphere density
- plume retains momentum, can rise a few kms more to H_T
- horizontal spreading sets in, even upwind(!), gravity current driven
- most of tephra fallout from umbrella's base
- Pinatubo 1991 umbrella cloud covered area of 230,000 km² (Utah: 219,890 km²)

Francis & Oppenheimer, 2004; Takehiro Koyaguchi;

Plume Basics - Pinatubo

visible wavelengths from 13:40-16:40 local time Self et al., Fire & $\mathop{\textit{Mud}}_{12/23}$

Plume Basics - Pinatubo

Thermal-infrared wavelengths from 13:40-16:40 local time Self et al., Fire & Mud23

Plume Basics - Pinatubo

Self et al., Fire & Mud

• relationship between height of a plume (H_T in km) and **dense rock equivalent** magma discharge rate (Q in m^3/s)

Mastin et al., 2009

- relationship between height of a plume (*H_T* in km) and **dense** rock equivalent magma discharge rate (*Q* in *m*³/*s*)
- $H_T = 2.00 Q^{0.241}$ (Mastin et al, 2009) (converted mass eruption rate kg/s to discharge rate m³/s)

Mastin et al., 2009

- relationship between height of a plume (*H_T* in km) and **dense** rock equivalent magma discharge rate (*Q* in *m*³/*s*)
- $H_T = 2.00 Q^{0.241}$ (Mastin et al, 2009) (converted mass eruption rate kg/s to discharge rate m³/s)
- i.e. 16-fold increase in eruption rate required to double plume height

Mastin et al., 2009

- relationship between height of a plume (*H_T* in km) and **dense** rock equivalent magma discharge rate (*Q* in *m*³/*s*)
- $H_T = 2.00 Q^{0.241}$ (Mastin et al, 2009) (converted mass eruption rate kg/s to discharge rate m³/s)
- i.e. 16-fold increase in eruption rate required to double plume height
- tracking *Q* through eruption and integrating gives total erupted mass

Mastin et al., 2009

Pyroclastic Fall Deposits

- deposits used to assign magnitude and intensity to prehistoric eruptions
- deposit magnitude: thickness or mass as function of distance from vent
- generally exponential thinning of tephra deposits from vent
- use to estimate total volume
- distal segment most difficult to asses (wide distribution, poorly preserved)

Pyroclastic Fall Deposits

- eruption intensity:infer from relationships between grain size, grain density, column height, depositional characteristics
- large uncertainties introduced during field sampling (point samples)
- total grain size distribution (TGSD) is more important (input for ash dispersion models)
- TGSD difficult to measure:
 - · deposits are widespread
 - grain size varies up section
 - distal deposits again poorly preserved
- critical data for source plume models

Fuego Volcano, Rose & Durant, 2009

- hot gravity driven currents
- travel at high velocities
- can form by lava dome or (sub- / ultra-) plinian column collapse
- high velocities, high temperatures make direct measurements impossible

	The second se
	1 1
	bonder alanta bond
Preselactic donsibi current	The Real Property of the Prope
Pyroclastic density current	Antiquity of Residence / 100 10
	4
Aggrading deposit	Thun the second
	The hour dama some
	shown in b or c

Francis & Oppenheimer, 2004

Pyroclastic Density Currents

http://geology.gsapubs.org/content/40/11/1035/F3.expansion.html

Pyroclastic Density Currents - Unzen 1991

https://www.youtube.com/watch?v=Cvjwt9nnwXY

- Devised by Chris Newhall & Stephen Self in 1982
- "Richter scale for eruptions" (note, we don't use Richter scale anymore)
- based on volume of tephra, plume height
- often criticized / used for things it wasn't made to do
- recently revised by Houghton and others (2013, Geology) to account for small explosive events

Volcanic Explosivity Index

VEI	0	1	_ 2	3	4	5	6	7	8
General Description	Non- Explosive	Small	Moderate	Moderate- Large	Large	Very Large			
Volumn of Tephra (m ³)	1x	10 ⁴ 1x	10 ⁶ 1x	10 ⁷ 1x1	0 ⁸ 1x	10 ⁹ 1x1) ¹⁰ 1x1	0 ¹¹ 1x10 ¹²	
Cloud Column Height (km) Above crater Above sea level	<0.1	0.1-1	1-5	3-15	10-25				;
Qualitative Description	"Gentle,"	"Effusive"	← "Exp	losive">«		ataclysmic," Severe," "viole	paroxysmal, nt," "terrific	" colossal" -	;
Eruption Type (see fig. 7)	← Haw	← Strom	abolian>	✓ Vulcanian		— Plinian — ∙<	- Ultra-P	inian	;
Duration (continuous blast)	<	<1	hr	> < - 1-6 hrs -	6-12 hrs	·	>12 hrs —	n han od hale r han od hale	;
Maximum explosivity	Lava flow Dome or n	<	Phreatic -	Ex	plosion or	Nuée ardente	-	inter starting and	;
Tropospheric Injection	Negligible	Minor	Moderate	Substantial					;
Stratospheric Injection	None	None	None	Possible	Definite	Significant	12-12)	;
Eruptions	976	1239	3808	1083	412	168	50	6	0

Newhall & Self, 1982; Siebert et al., 2010

Volcanic Explosivity Index+

New VEI	Old VEI	Volume range m ³			Eruption style				
-6	0	1E-2 to 1E-1	<u>_</u>]						
-5	0	1E-1 to 1E0	bolia						
-4	0	1E0 to 1E+1	. In	_					
-3	0	1E+1 to 1E+2	<u>~</u>	HMN					
-2	0	1E+2 to 1E+3							
-1	0	1E+3 to 1E+4	5						
0	1	1E+4 to 1E+5	vsm		an	an			
1	1	1E+5 to 1E+6	paro	an	Plini	Icani	ian		
2	2	1E+6 to 10E+7		awaii	: sub	ηΛ	lildd	1	
3	3	1E+7 to 1E+8		Ϊ	saltic	an	ic su		
4	4	1E+8 to 1E+9			ba	Plini	silic	<u>_</u>	ing
5	5	1E+9 to 1E+10				saltic		c Plir	
6	6	1E+10 to 1E+11				ba		silici	te pro
7	7	1E+11 to 1E+12							mbri
8	8	>1E+12							idui

Houghton et al., 2013 23/23