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Volcanic Explosivity Index

Devised by Chris Newhall & Stephen Self in 1982

¢ “Richter scale for eruptions” (note, we don’t use Richter scale
anymore)

¢ based on volume of tephra, plume height
¢ often criticized / used for things it wasn’t made to do

e recently revised by Houghton and others (2013, Geology) to
account for small explosive events
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Volcanic Explosivity Index

VEI 0 1 2 3 4 5 ] 7 8
General Description Ex’:z;.lve Small | Moderate "'“Ladem'?“ Lage | Loroe | |
Violumin of Tephra {m’) 1x10* 1x10° 1x107 1x10* 1x10* 1x10™ 1x10™ 1x10™

| | | | I | | |

Cloud Column Height (km) | | 1 | | | |
Above crater <01 0.11 I 1-5
Above sea level | | | 315 | 10-25 >25

“Gentle,” “Effusive” = “Explosive” “Cy ic,” " “colossal’ ——a

Qualitative Description
. 5 —— Severe” “viokent® ‘temific —— >

Eruption Type -— —_ Plinian
(soafig. T) €—— Hawaiian =——3 €—— Vulcanian Ultra-Plinian
Duration <1 hr = >12hrs
e
{conbmous blast) She

E-12hrg ———>

oy § Lava flow  s— Fyplosion or Nuée ardente. ————————————
Masimum explosivity €—— Phregtipc ——— ————=—————— === >
Dome or mudfiow

Tropaspheric Injection Negligible Miner Moderate
Stratospheric Injection None None None Possible Definite
Eruptions a6 1239 3808 1083 412 168 50 [} o

Newhall & Self, 1982; Siebert et al., 2010
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Volcanic Explosivity Index+

New VEI OId VEI Volume range m? Eruption style
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8 8 S1E+12 5

Houghton et al., 2013
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Plume Basics

What'’s in a plume?

ISS Crew, 2008
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Plume Basics

What'’s in a plume?
¢ hot pyroclasts

e magmatic gas

e air

ISS Crew, 2008
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Plume Basics

Velocity

RREe  source
Francis & Oppenheimer, 2004

Hg: height of neutral buoyancy; Hr: maximum plume height
(Hr = 1.4Hp)
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Examples - Karymsky 2008 R. Grapenthin
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Examples - Karymsky 2008 R. Grapenthin
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Plume Characteristics

Umbrella cloud —
,,'

Sparks et al., 1997

17/37



Plume Characteristics
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Sparks et al., 1997
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Plume Characteristics

No wind - radial growth
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Sparks et al., 1997
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Examples - Karymsky

S. Serovetnikov (?)




Examples - Grimvétn" 2011

B. Oddsson
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Examples - Kliuchevskoy Group 2010 s. serovetnikov




Plumes vs. Wind
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Sparks et al., 1997
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Plumes vs. Wind

Equivalent line source thermal
for weak plume model

Counter-rotating -
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Figure 11.9 Schematic diagram showing the local features of the interaction of a plume with the
wind (after Figure 5a of Emst et al. 1994). When the plume is bent over into a subhorizontal
orientation, it resembles a thermal in cross-section

Sparks et al., 1997
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Plumes vs. Wind

Counter-rotating
vortex pair

Jet shear-layer
vortices

Figure 11.10 Diagram showing four types of vertical vortical structures developed by interaction
of a plume or jet with a cross-flow (after Fric and Roshko 1994)

Sparks et al., 1997
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Plumes vs. Wind vs. Topography

Figure 11.11 A Landsat image showing the plume of April 3, 1986 issuing from the crater of
Augustine volcano, Alaska. (Photograph provided by W. I. Rose.)

Sparks et al., 1997
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Plume Dispersal — Redoubt 1990
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Sparks et al., 1997
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Plume Dispersal — Mt. St. Helens 1980
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Figure 11.20 (a) Map traced from satellite imagery showing the initial growth of the giant umbrella
cloud of Mount St Helens (from Sparks ef al. 1986). Contours are in five minute intervals labelled
with local time in hours and minutes. (b) Map traced from satellite imagery showing the later growth
of the May 18, 1980 Mount St Helens plume (redrawn from Sarna-Wojcicki et al. 1981)

Sparks et al., 1997
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Plume Dispersal — Spurr 1992 (4 days)
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Sparks et al., 1997
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Plume Dispersal — Pinatubo 1991 (3 months)

0 100 200 3.00 400 500 600 7.00 800 9.00 10.00 11.00 12.00 13.00 14.00 15.00

Plate VI Figure 18.10 The global distribution of sulphur dioxide at the 26 km level on September
21, 1991, approximately three months after the Pinatubo eruption (Read et al. 1993). The colour
bar units are in parts per billion by volume
Sparks et al., 1997
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Density Variations in Eruptive Mix

Density of mixture (3) given by:

1 1—n n
[ — + —
P

n, p: mass fraction & density of gas
o density of pyroclasts
assume gas phase behaves as perfect gas:

_ P
P = RT

P, T: pressure & Temperature of mixture
R: gas constant, average if gaseous components: air=285 Jkg~ 'K,
CO, = 185Jkg~ 'K, water vapor=460Jkg—'K~'

30/37



Density Variations in Eruptive Mix
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Sparks et al., 1997

Density of mixture (entrained air, pyroclasts, volatiles) function of
entrained air; three eruption temperatures given in Kelvin & constant

water 3%
31/37



Density Variations in Eruptive Mix

(a) Maximum height of column (®)
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Sparks et al., 1997

entrainment coefficients: jet ~ 0.06; buoyant plume = 0.09 (more
efficient; other models exist)
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Density & Temperature Variations
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Velocities vs. Vent Radii
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Figure 4.5 Variation of the velocity in the column as a function of the height. Curves are shown for
(a) three initial radii, 10, 40 and 200 m with eruption velocity of 100 m s~!, and (b) three eruption
velocities 200, 100 and 75 m s~ ! with a radius of 100 m. The mass fraction of water is 0.03 and the
eruption temperature 1000 K. With the larger initial radius (a) or smaller eruption velocity (b) the
material takes longer to entrain sufficient fluid to become buoyant, eventually leading to collapse in
the case of the 200 m initial radius (a) and 75 m s~ " initial velocity (b). The 10 m vent radius (a) and
200 m s~ eruption velocity (b) lead to a monotonically decaying velocity profile, since the material
becomes buoyant rapidly. However, the 40 m vent radius (a) leads to a non-monotonic velocity
profile, because the column entrains ambient air more slowly, and so the velocity falls off
dramatically before the material becomes buoyant. A column with this non-linear velocity profile is
referred to as superbuoyant. After Bursik and Woods (1991)

Sparks et al., 1997

34/37



Eruption Regimes: Velocities vs. Vent Radii
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Sparks et al., 1997

Solid curves are labeled with initial mass fraction of water
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Humidity - Vapor entrainment
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Sparks et al., 1997

Solid curves are labeled with different relative humidities
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Jet Rise Heights - Vapor entrainment
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Sparks et al., 1997

10 m vent diameter with 100 m/s initial velocity, curves for different
particle radii in meters
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