How volcanoes work: A 25 year perspective

Katharine V. Cashman and R. Stephen J. Sparks
School of Earth Sciences, University of Bristol, Bristol BS81RJ, UK

ABSTRACT

Over the past 25 years, our understanding of the physical processes that drive volcanic eruptions has increased enormously thanks to major advances in computational and analytical facilities, instrumentation, and collection of comprehensive observational, geochemical, and petrological data sets associated with recent volcanic activity. Much of this work has been motivated by the recognition that human exposure to volcanic hazard is increasing with both expanding populations and increasing reliance on infrastructure (as illustrated by the disruption to air traffic caused by the 2010 eruption of Eyjafjallajökull volcano in Iceland). Reducing vulnerability to volcanic eruptions requires a thorough understanding of the processes that govern eruptive activity. Here, we provide an overview of our current understanding of how volcanoes work. We focus particularly on the physical processes that modulate magma accumulation in the upper crust, transport magma to the surface, and control eruptive activity.

INTRODUCTION

Volcanic eruptions are a spectacular manifestation of a dynamic Earth. They not only link deep Earth (the geosphere) to the hydrosphere, atmosphere, and biosphere but also affect human populations (~600 million people live close enough to an active volcano to be affected by eruptions, and civilization itself could be threatened by the largest explosive eruptions that have occurred in Earth history. The core questions of volcanology focus on how volcanoes work, that is, how magma forms and moves to the surface, and how the specific properties of the magma, and the lithosphere through which it moves, control eruptive activity. Here, we review progress that has been made on this core topic over the past quarter century. To provide a context, we start by reviewing volcanic landforms and associated styles of eruptive activity. We then describe our current understanding of magma storage regions (magma chambers) and eruption triggers. Finally, we look at eruptions themselves, from the ascent of magma through the crust to the physical controls on eruption styles and generation of eruptive products. We recognize that it is impossible to do justice to all of these topics—or all of the scientists who have contributed to the contemporary understanding of volcanism—in a single article. In this regard, we note that a thorough review of the field was completed in 2000 with the publication of the Encyclopedia of Volcanoes (Sigurdsson et al., 2000).

VOLCANIC ERUPTIONS—AN OVERVIEW

Volcanoes vary greatly in morphology, evolution, eruptive styles, and behaviors as a consequence of the wide variety of tectonic settings, melt production rates, magma compositions, and eruption conditions that they represent. Here, we introduce common volcanic landforms, together with the eruption styles responsible for their formation. Because magma composition is an important control on eruptive style, we separate discussions of mafic and intermediate/silicic volcanism.

Mafic Volcanoes

Mafic volcanoes vary greatly in scale and construction style. The iconic basaltic landform is a shield volcano, such as those that comprise the Hawaiian Islands, United States (Fig. 1A). Shield volcanoes are constructed primarily by successive lava flows and are commonly characterized by relatively low slopes. Other mafic volcano morphologies include the “inverted soup bowl” shape of Galapagos volcanoes; steep-sided cones, like Pico volcano in the Azores and Kluchevskoi in Kamchatka; fissure volcanoes in tectonic rifts such as Iceland, where they may be associated with a central subsidence caldera; tuva volcanoes erupted under ice or in shallow-marine environments; mid-ocean ridges with morphologies that reflect spreading rate; and fields of monogenetic volcanoes, each related to a single eruptive episode. These landforms reflect a range in eruptive styles, the most common of which are reviewed next (see also Francis et al., 1990).

Hawaiian volcanism is associated with the eponymous Hawaiian eruptive style, which is dominated by fluid lava flows. Lava flows often emerge directly from dike-fed fissure systems; for this reason, shield volcanoes tend to be elongated along the fissure direction. Hawaiian shield volcanoes are built of stacks of these flows; their low slopes reflect both the fluidity of the initial lava and the tendency for lava flows to thicken (because of cooling, crystallization, and associated increases in viscosity) with transport distance from rift zone vents (e.g., Katz and Cashman, 2003). An unprecedented look at the structure of Hawaiian volcanoes has been provided by a 15-yr-long drilling project that recovered core from Hawaii’s Mauna Loa volcano to a depth of ~3500 m, which represents an ~700 k.y. history of the Hawaiian plume (Stolper et al., 2009). Not surprisingly, given the proximity of the drilling site to the current shoreline, subaerial lavas represent only a small fraction of the core samples, with most of the volcanic sequence represented by subaqueous hyaloclastites and pillow basalts.

From a hazards perspective, an important discovery about Hawaiian volcanism has been the recognition that Kilauea volcano has experienced periods of highly explosive activity in addition to the effusive eruptions of the past few centuries (Fiske et al., 2009). Episodes of explosive activity are particularly frequent during times immediately following summit caldera formation (Swanson, 2008; Swanson et al., 2012). Summit calderas in mafic shield volcanoes form by rapid drainage of magma from summit storage regions to flank vents (e.g., Guðmundsson, 1987). In Hawaii, this drainage allows access of groundwater to the magmatic system, which may fuel the high explosivity observed in postcaldera periods.

Stromboli volcano, Italy (Fig. 1B), is the type location for the Strombolian eruption style, which is characterized by frequent (often several per hour) small explosions that have been attributed to the rise and bursting of large individual gas bubbles (e.g., Vergniolle and Jaupart, 1986). Stromboli thus represents an “open-system” volcano, that is, a volcano where gases can move freely through the system. In fact, Stromboli typically produces ~10^9 times more gas
than can be accounted for by the magma ejected beyond the vent (e.g., Harris and Ripepe, 2007). However, Stromboli can also produce lava flows and “paroxysmal” eruptions, as demonstrated in 2002–2003 and 2007 (e.g., Ripepe et al., 2005; Calvari et al., 2008; Scandone et al., 2009). This variability in eruption style derives from the complex structure of the magma storage and transport system, and the resulting alternation between near-surface and deep controls on eruptive activity.

Cinder cone fields characterize regions of active extension and transtension (Fig. 1C). Here, ascent and eruption of small mafic magma batches produce a spectrum of eruptive styles from fissure-fed Hawaiian lava flows to Strombolian bubble bursts to explosive gas-charged violent Strombolian eruptions to passive lava effusion. Hawaiian-style eruptions are dominated by lava flows, Strombolian-style eruptions produce small scoria cones and/or lava flows, and violent Strombolian eruptions produce substantial tephra sheets. Other features that are important in the spectrum of small mafic volcanoes are maars and diatremes, which have craters that have excavated well below the pre-eruptive surface; whether this characteristic requires interaction with external water sources remains a matter of debate (e.g., White and Ross, 2011). Improving our understanding of small mafic eruptions is important because cities such as Auckland, New Zealand, Bend, Oregon, and Mexico City, Mexico, are constructed within active cinder cone fields.

More important for hazards, and more puzzling from the perspective of physical volcanology, is the recent documentation of highly explosive eruptions from mafic volcanic centers. Widespread tephra deposits from mafic volcanoes were first recognized from eruptions of Masaya, Nicaragua (Williams, 1983; Bice, 1985). Interest in mafic Plinian eruptions revived with documentation of a mafic Plinian eruption from Etna volcano in 122 B.C. (Coltelli et al., 1998) and has led to numerous detailed fields studies of mafic explosive volcanism (for example, Cas and Giordano, 2006; Pérez and Freundt, 2006; Costantini et al., 2010). Most surprising, however, has been the recognition of very large (tens of cubic kilometers) mafic ignimbrites from Colli Albani volcano, Italy (Fig. 1D; Funiciello and Giordano, 2010). The generation of large mafic ignimbrite deposits is curious from several perspectives, including the mechanisms by which large volumes of mafic (and very low viscosity) magma accumulate in the upper crust (rather than rise to the surface in small batches) and maintain sustained explosive activity (rather than losing volatiles and changing to effusive eruption styles).

Another exciting advance in mafic volcanism over the past few decades has come from the oceans. Studies of submarine volcanism increased with the advent of the RIDGE program of the 1980s and 1990s, which greatly enhanced our understanding of processes occurring in mid-ocean-ridge environments. Mid-ocean ridges are sites of frequent volcanic activity that is typically manifested as fissure-generated lava flow eruptions of varying intensities (e.g., Rubin et al., 2012). These eruptions can be monitored where ocean-based hydrophone networks are sufficiently dense to record T-phase seismicity associated with magma migration to the surface (e.g., Slack et al., 1999). Axial volcano on the Juan de Fuca Ridge (NE Pacific) also hosts a submarine monitoring network of seismic, pressure, and deformation sensors that has now recorded...
multiple eruptions (e.g., Fox et al., 2001; Nooner and Chadwick, 2009; Caress et al., 2012; Chadwick et al., 2012; Dziak et al., 2012; Mitchell, 2012). Additionally, recent remotely operated vehicle (ROV) cruises to the western Pacific have identified several mafic submarine arc volcanoes that are either commonly or persistently active (e.g., Embley et al., 2006). One of these, NW Rota-1, lies ~100 km north of Guam in the Marianas, has been erupting since at least 2004, and has produced eruptions that range from effusive to mildly explosive (e.g., Chadwick et al., 2008; Fig. 2). Studies of these systems provide important insight into processes that form both oceanic crust and the island-arc component of continents.

Intermediate/Silicic Volcanoes

Stratovolcanoes are perhaps the best-known (and most iconic) volcano type (Fig. 3A). They are steep-sided cones constructed from stacked lavas and pyroclastic deposits (Fig. 3B). Central cones are often surrounded by gently dipping flanks composed of lavas and pyroclastic and volcaniclastic (particularly volcanic mudflow) material. Although not always intermediate in composition (Etna, Italy, Fuji, Japan, and Villarica, Chile, are basaltic examples), this geomorphic form typifies volcanoes constructed from viscous (often intermediate/silicic) magmas that erupt explosively as well as effusively.

Explosive eruptions of stratovolcanoes are classified as Plinian if they are large (with eruption column heights in excess of 20–25 km and dense rock volumes >1 km³), sustained, and produce widespread tephra deposits (Newhall and Self, 1982). This term derives from the 79 A.D. (Pompeii) eruption of Vesuvius, Italy, and can be applied to sustained eruptions of Mount St. Helens, United States, in 1980 and Pinatubo, Philippines, in 1991. Eruptions with smaller volumes (0.1–1 km³), lower eruption columns (<20–25 km), and more local tephra deposits are termed subplinian. Short-lived (typically tens of seconds) but intense explosions characterize Vulcanian eruptions, which are most common in volcanoes of intermediate (andesitic to dacitic) compositions. The type locality—Vulcano—is rhyolitic, but also erupts latite and trachyte magmas. The continuum from sustained Plinian through pulsatory subplinian to Vulcanian activity derives from variations in magma kinetics and dynamics during ascent (e.g., Cashman, 2004; Mason et al., 2006).

Stratovolcanoes are prone to failure either by sector collapse, as illustrated by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), or by caldera formation, as occurred at Mount Pinatubo in 1991 (Newhall and Punongbayan, 1996). Sector collapse is commonly accompanied by explosive activity; particularly lethal are resulting laterally directed blasts, which occur when the edifice (or dome) fails because of intruding magma (e.g., Druitt, 1992; Hoblitt, 2000; Voight et al., 2002). Caldera collapse follows withdrawal of large volumes of magma. Famous caldera-forming

Figure 2. NW Rota-1 submarine volcano. (A) Bathymetry and location map; (B) explosion showing quench fragmentation within the plume; (C) red lava explosion (modified from Chadwick et al., 2008; Deardorff et al., 2011).
eruptions include the ca. 7700 yr B.P. eruption of Crater Lake, Oregon (Bacon, 1983; Bacon et al., 2002), the ca. 3600 yr B.P. eruption of Santorini, Greece (Druitt et al., 1989), and the more recent eruptions of the Indonesian volcanoes Tambora (A.D. 1815; Oppenheimer, 2003) and Krakatau (A.D. 1883; Simkin and Fiske, 1983; Self, 1992). Exploration of the western Pacific has shown that caldera formation is not confined to subaerial environments, but that silicic submarine calderas are also common in submarine arc volcanoes (e.g., Wright and Gamble, 1999; Fiske et al., 2001; Tani et al., 2008). Moreover, silicic submarine calderas are often associated with extensive Kuroko-type mineralization (e.g., Iizasa et al., 1999).

Very large caldera-forming eruptions create inverse volcanoes, or central collapse depressions surrounded by widespread pyroclastic fans, such as the Taupo volcano, New Zealand (Wilson, 1985). Large caldera systems are commonly termed “supervolcanoes,” as they represent an extreme end member of volcanic activity. Caldera formation in these systems is attributed to subsidence related to rapid withdrawal of very large volumes of magma (tens to a few thousand km³) in single events; subsidence causes large pressure changes, failure of the roof rocks, and collapse (e.g., Gudmundsson, 1988; Lipman, 1997). The central depressions often host thick sequences of caldera fill. After caldera formation, these intracaldera ignimbrites can be lifted up to form resurgent domes at the center of the original depression (e.g., Acocella et al., 2000). Eruptions of these types are rare (Mason et al., 2004); thus recent advances derive from new field studies, analytical techniques, analogue experiments, and numerical models rather than direct observation of eruptive activity (e.g., Wilson and Hildreth, 1997; Jellinek and de Paolo, 2003; Acocella, 2007; Cashman and Cas, 2011). Fascination with these events derives in part from the recognition that large caldera-forming eruptions may have played a role in the development of human history, such as the 39,000 yr B.P. eruption of Campi Flegrei, Italy (e.g., Fedele et al., 2008) and the 75,000 yr B.P. eruption of Toba, Indonesia (e.g., Ambrose, 1998, 2003). These large systems are commonly restless (e.g., Fig. 3C) and thus pose a major monitoring challenge.

Another end member is represented by effusive eruptions of very viscous intermediate to silicic magmas that create high-aspect-ratio lava flows, domes, and spines (Fig. 3D). Although effusive, these eruptions pose unique hazards related to pressurization and collapse of dense lava plugs. Recent well-observed dome eruptions of Mount St. Helens (1980–1986 and 2004–2008; Swanson and Holcomb, 1990; Sherrod et al., 2008); Unzen, Japan (1991–1995; Nakada et al., 1999), and Soufrière Hills volcano, Montserrat (1995–present; e.g., Sparks and Young, 2002).
have provided a wealth of observational data about this eruption style, and show that growing domes (or cryptodomes) can generate (1) lateral volcanic blasts and sector collapse with debris avalanches, (2) subplinian and Volcanian explosive eruptions, and (3) (sometimes lethal) pyroclastic flows from collapse of active flow fronts. A key factor for hazard assessment has been the recognition of not only the longevity of some dome-forming activity but also the rapid transitions from effusive to explosive activity that characterize eruptions of this type (e.g., Sparks, 1997).

DEVELOPMENT OF SHALLOW MAGMA STORAGE SYSTEMS

A critical control on eruption style is the pre-eruptive history of shallow magma storage in magma chambers. Migmatic systems are commonly envisaged as interconnected crystal-melt mush zones and melt-dominated regions, or magma chambers (Hildreth, 2006; Annen et al., 2006), where the distinction between mush and magma is that of noneruptible and eruptible material. The threshold itself depends on factors like crystal size, shape, and strain rate (e.g., Kerr and Lister, 1991; Cimarelli et al., 2011). Below a critical melt fraction, the system can be viewed rheologically as partially molten. Kerr and Lister, 1991; Cimarelli et al., 2011). Taken as a whole, the growing convergence of geophysical and petrological evidence for the location and geometry of magma storage regions is encouraging, particularly with regard to understanding links between magma storage conditions and volcanic eruptions.

Magma Chamber Formation

It is important to note that most magma never makes it to the surface. Estimates of the proportion of intruded to extruded magma range from 3 to 10 (e.g., Newhall and Dzurisin, 1989; White et al., 2006). From this perspective, intrusions can be viewed as failed eruptions (or, from another perspective, eruptions may be viewed as failed intrusions). In either case, understanding the causes of, and interpreting the signs of, magma arrest has become an important focus of volcanological studies (e.g., Moran et al., 2011; Bell and Kilburn, 2012).

Rising magma can stall for a variety of mechanical reasons (Taisne and Tait, 2009). Dikes may not reach the surface if the driving pressure is insufficient (e.g., Lister and Kerr, 1991), if the magma density is too high (Ryan, 1987), or because the volcanic edifice itself creates regions of high stress below (Pinel and Jaupart, 2004). Dikes can suffer thermal death because of cooling (Taisne and Tait, 2011) or viscous death by decompression-induced crystallization (Annen et al., 2006). Sills form where magma moves laterally; this can occur when rising magma encounters a rigidity or density barrier (Kavanagh et al., 2006; Taisne and Jaupart, 2009), or where the minimum principal stress is vertical. Sheeted sills probably constitute much of the crust formed at mid-ocean ridges (e.g., Fialko, 2001). Dike-sill complexes may also amalgamate to form magma reservoirs (e.g., Hildreth, 2006; Menand, 2011; Fig. 4). Magma accumulation sufficient for amalgamation requires heat to be advected into the upper crust faster than heat can be conducted away or lost by hydrothermal circulation. Modeling by Annen (2009) suggests that magma intrusion rates must exceed 10^{-3} km3/yr to allow magma chambers to form.

Geophysical Evidence for Magma Chambers

Locations of active magma intrusion can be identified from geophysical data and constrained by surface phenomena such as invigorated fumaroles or phreatic explosions. A particularly exciting development in the past decade has been the increasing use of interferometric synthetic aperture radar (InSAR) to identify and monitor intrusion sites (e.g., Pritchard and Simons, 2004; Biggs et al., 2009; Fournier et al., 2010; Riddick and Schmidt, 2011). Regions of melt accumulation can also be imaged geophysically using both active and passive seismic techniques. Passive source techniques, such as location of earthquake epicenters adjacent to magma bodies (Ryan, 1987),...
are the most common. Passive source seismology has improved dramatically through use of broadband and three-component seismometers; new data have also raised new questions about the source of volcano-related seismicity (e.g., Neuberg et al., 2006; Harrington and Brodsky, 2007; Waite et al., 2008; Moran et al., 2008). At the same time, improvements to data inversion techniques are providing increasingly detailed three-dimensional views of active magmatic systems (e.g., Chaput et al., 2012).

During the 1990s, geophysical experiments in mid-ocean-ridge environments showed that melt storage along fast-spreading ridges is typically shallow (2–3 km) and confined primarily to thin along-axis sills (e.g., Singh et al., 2006). A similar picture is emerging from recent activity in Iceland, where deformation and seismic signals related to the 2010 eruption of Eyjafjallajökull volcano, Iceland, suggest that this eruption was fed by a complex network of sill-like magma bodies that may have extended to the base of the crust (e.g., Sigurdsson et al., 2010; Tarasewicz et al., 2012). In contrast, magma beneath stratovolcanoes is apparently stored in narrow and vertically elongated regions that may segregate into small melt pockets (e.g., Lees, 1992; Waite and Moran, 2009; Paulto et al., 2012; Fig. 5). Upper-crustal magma chambers beneath stratovolcanoes are probably fed from larger magma accumulations at depth. An example is provided by Vesuvius, Italy. Here, a small shallow magma body (4–5 km depth) is underlain by a main magmatic system at 10–15 km depth, while the melt-bearing region extends to ≤30 km depth (Di Stefano and Chiarabba, 2002). More generally, zones of plate convergence often show midcrustal anomalies that may be associated with melt accumulation (Brown et al., 1996; Zandt et al., 2003).

Taken together, these studies show that magmatic systems beneath many volcanoes and volcanic regions consist of localized magma chambers (zones of melt accumulation) concentrated at the top of much thicker regions of crystal-melt mush. Importantly, large bodies of melt are rarely detected, which suggests that most persistent magma chambers are small and that the accumulation of very large bodies of magma required to feed large ignimbrite eruptions is rare. This in turn suggests that melt is generated and stored as partial melt within the deeper crust for long periods of time prior to being transferred rapidly to shallow levels (Annen et al., 2006). Support for rapid magma transfer can be found in a recent petrological study of magma accumulation prior to the Bronze Age eruption of Santorini (Druitt et al., 2012) and in a zircon chronology study of the Taupo volcanic system, New Zealand (Wilson and Charlier, 2009).

Petrologic Constraints on Magma Storage and Eruption Triggers

Petrology has long been used to study the evolution of magmatic systems. Over the past few decades, petrologic techniques have been increasingly applied to questions of pre-eruptive magma storage, particularly those that may lead to eruptions. Here, we briefly review insight about magma storage conditions that has been acquired from petrologic studies. We then look at petrologic constraints on triggers of eruptive activity.

Petrologic Constraints on Magma Storage

Once a magma chamber has formed, it determines both the nature of magmas that can erupt and the fate of new melt inputs. Magma accumulation retards the ascent of new magma, and thus extends the time of magma residence in the upper crust prior to eruption. For this reason, identical magmas rising beneath, or outside of, central magma storage regions may have the same composition but different temperatures, crystallinities, and eruption styles (e.g., Frey and Lange, 2011). Processes active within central (and open) magma chambers can be complex, including magma mingling/mixing, compositional stratification, disruption of cumulates, and assimilation of wall rock. Additionally, several recent studies document the presence of diverse and intimately mixed individual crystals with very different origins. These processes are illustrated schematically in Figure 6, which shows both the magma storage and transport system of Shiveluch volcano, Kamchatka, and the consequent diverse histories of individual phenocrysts reconstructed from petrological studies. Importantly, these observations require physical mechanisms of incorporating, and homogenizing, crystal cargo from very different parts of the magma storage systems. How this occurs remains an important question.

Constraints on the temperature, pressure, volatile partial pressures, and oxidation state in magma chambers can be obtained using geothermometers, geobaro meters, melt inclusion studies, and comparison of natural mineral assemblages with those produced in experiments (reviewed in Pichavant et al., 2007; Blundy and Cashman, 2008; Putirka, 2008; Métrich and Wallace, 2008). Experimental studies of subduction-zone volcanoes suggest that magma is commonly stored at 100–200 MPa under volatile-saturated conditions. These experiments also show that exsolution of H2O accompanying magma ascent changes the stability of some crystal phases, most notably plagioclase. Thus, the preserved phase assemblage (phases, phase proportions, and phase compositions) often provides tight constraints on storage conditions just prior to eruption (Fig. 7A). Information on pre-eruptive magma storage can also be derived from analysis of phenocryst-hosted melt inclusions. The preserved volatile content of melt inclusions, in particular, can be used to infer the pressure (depth) of crystal formation and thus the nature of magma storage systems characteristic of different volcano types (Fig. 7B). Early-erupted samples from large ignimbrite-producing rhodacitic eruptions typically preserve melt inclusions that are H2O-rich but have lost much of their CO2, suggesting protracted storage at (often) 150–200 MPa (open circles, Fig. 7B). Later-erupted samples from the same eruptions have melt inclusions that are more enriched in CO2, and often encompass a wider range in pressure than early-erupted...
The past decade has also seen rapid improvements in microanalytical techniques that are providing new insight into the details of magma storage conditions. Time scales of magmatic activity are constrained by isotopic (particularly U-series isotopes) and diffusion studies. U-series studies place constraints on phenocryst residence times within magma storage regions (e.g., Zellmer et al., 2003; Cooper and Reid, 2008). These studies reflect the integrated age of the crystal population and commonly yield time scales of thousands of years. In contrast, diffusion studies take advantage of chemical zoning profiles in phenocrysts caused by magma recharge or depressurization. This approach is more likely to reflect events responsible for triggering eruptive activity, and commonly yields time scales of months to decades (e.g., Hawkesworth et al., 2004; Costa and Morgan, 2010). Similar time scales are recorded by U-series studies of magma degassing (e.g., Condomines et al., 2003; Berlo et al., 2004).

Triggering Eruptions

Two end-member models have emerged for eruption triggering. First, there is clear evidence that melt recharge events may trigger eruptions by mobilizing stored and partially crystalline magma (e.g., Murphy et al., 2000; Ruprecht and Cooper, 2012). Second, evolved melt may be rapidly and efficiently extracted from mush zones and transported to shallow storage regions. These two mechanisms are not mutually exclusive, and they may act in tandem to fuel some eruptions. Other triggering mechanisms include buildup of pressure in crystallizing, water-supersaturated magma (Tait et al., 1989) and low-viscosity recharge magma (e.g., Kent et al., 2010). The recharge magma may disrupt the crystal network by fluxing gases (e.g., Gravley et al., 2007). Mafic recharge can trigger eruptions when hot, low-viscosity, crystal-poor melt batches interact with cooler stored magma that is typically more evolved and more crystalline. The (semirigid) mush zone serves to both stabilize the magma and to act as a trap, or rheological barrier, to eruption of either the evolved crystalline melt or the low-viscosity recharge magma (e.g., Kent et al., 2010). Although the recharge magma is commonly mafic, cryptic recharge of (hotter and less viscous) silicic magma may also serve as an eruptive trigger (e.g., Smith et al., 2009).

There is also growing evidence of efficient segregation and upward migration of rhylolitic melt from midcrustal “mush” zones. First suggested by Eichelberger et al. (2000), rhylolite melt segregation has been particularly well documented by zircon dating of the products of Taupo volcano, New Zealand. Here, melt segregation appears to have been both efficient and rapid, such that large (~500 km³) volumes of melt may have accumulated in hundreds to a few thousands of years (e.g., Charlier et al., 2005). Rapid melt segregation and shallow accumulation of rhylolitic melt prior to large caldera-forming eruptions are consistent with melt inclusion evidence for sill-like geometries (e.g., Blundy and Cashman, 2008), field and theoretical evidence for the inherent instability of such melt accumulations (e.g., Jellinek and DePaolo, 2003; De Silva et al., 2006), thermal models (Annen, 2009), and lack of geophysical evidence for large melt accumulations in most magmatic settings.
VOLCANIC CONDUITS

Prior to the mid-1980s, the vigor of eruptive activity was linked directly to the extent to which stored magma was saturated, or undersaturated, with volatile components. The 1990s saw a change in emphasis to conditions of magma transport from magma storage regions to the surface (that is, the role of conduits). This shift was largely the result of detailed observations of effusive eruptions of Mount St. Helens, United States, and Unzen volcano, Japan, coupled with recognition of the extent to which the physical properties of magma could change during transport because of decompression-driven volatile exsolution (e.g., Dingwell et al., 1996) and crystallization (e.g., Cashman, 1992). These rheological changes set up complex feedbacks between conditions of magma ascent and resulting styles of eruptive behavior (e.g., Melnik and Sparks, 1999).

Conduit Construction and Evolution

With the exception of open-system volcanoes such as Stromboli, Italy, and Villarica, Chile, magma storage regions are not connected to the surface; it is this isolation that allows them to develop sufficient overpressure to generate eruptive activity. Thus, magma must construct a pathway (conduit) to the surface. Conduit construction is not well understood, although it is commonly assumed that magma ascends via dike propagation, at least until it reaches shallow levels. The speed of dike propagation depends principally on magma viscosity (Kerr and Lister, 1991) and can be fast for basaltic magmas (decimeters to meters per second; e.g., Linde et al., 1993). Dike width is controlled by magma flow pressure through elastic deformation of the wall rock, with magma flow rate proportional to the product of the cube of the dike width and the length. For this reason, dike-fed eruptions show strong interactions between eruption rate and magma pressure (e.g., Costa et al., 2006). Dike closure may cause eruptions to end (or vents to shift) if the pressure becomes too low to drive continued magma flow or if magma cools and solidifies on the dike walls. These scenarios can be distinguished if there are good temporal constraints on mass flux. For example, documentation of a linear decrease in magma supply to the Kīlauea vent of Kīlauea volcano, Hawaii, between April and November of 1991 provided evidence of a gradual loss of driving pressure with time (Kauahikaua et al., 1996). Alternatively, dikes may fail to close completely when flowing magma and transported to the surface, but rapidly focus into one (or a few) localized vents. Processes that promote focusing in these systems most likely involve feedbacks among flow, magma rheology, and cooling (Bruce and Huppert, 1989). For example, advection of heat by rapid flow through the widest part of the initial dike will slow, or eventually reverse, rates of chilled margin growth (Holness and Humphreys, 2003); at the same time, lower flow rates through narrower regions will promote cooling and eventual solidification of dike extremities. Viscosity changes caused by degassing and crystallization should produce a similar flow focusing if the rheological changes occur preferentially at the dike margins (for example, in regions of high shear).

The geometry of volcanic conduits can also evolve by mechanical processes. Mechanical erosion is most likely where dikes change orientation, or at shallow levels in explosive vents. Exposures in caldera walls show that dikes are commonly segmented; offsets or jogs between segments are regions of complex brittle deformation, brecciation, and dilation that can localize flow. Xenoliths generated by deformation associated with localization can be removed by flowing magma and transported to the surface (Brown et al., 2007; Kavanagh and Sparks, 2011). Additionally, protracted effusive eruptions may create complex conduit systems. An unusual opportunity to view such a system in a recently active volcanic conduit was provided by the Unzen (Japan) drilling project. Drilling of the conduit system that fed a 1991–1995 dome-building eruption revealed a wide (500 m) conduit zone consisting of numerous individual feeder dikes (e.g., Sakuma et al., 2008).
Explosive eruptions also create conditions that promote mechanical erosion. In particular, cylindrical near-surface conduits develop when early magma is either sufficiently overpressured to excavate a conduit or sufficiently underpressured to cause wall rocks to fail, fall into the conduit, and be transported out of the conduit by high-speed explosive flows (Sparks et al., 2007; Barnett and Lorig, 2007). In powerful explosive eruptions, the level of fragmentation, and thus the depth of the resulting cylindrical conduits, can extend to kilometers. Early phreatic or phreatomagmatic stages of eruptive activity may also form cylindrical near-surface pathways that can then be used by magma fed from a deeper dike.

Synascent Changes in Magma Properties

As magma ascends toward Earth’s surface, decompression causes some volatile phases to exsolve and some solid phases to precipitate. These phase transformations affect the density and rheology of the magma and, to a lesser extent, its temperature. The past few decades have seen extensive research on the kinetics of the phase transitions, the rheology of complex (multiphase) suspensions, and the evolution of the gas phase, all of which are important for understanding the highly nonlinear dynamics of conduit flow processes that control eruptions.

Volatiles, Bubbles, and Crystals

Volatiles are more soluble in silicate melts at high pressure than at low pressure (e.g., Newman and Lowenstern, 2002; Papale et al., 2006). For this reason, decompression of volatile-saturated melt causes exsolution of the volatile phase as bubbles (vesiculation). The rate of vesiculation is controlled by the rate of bubble nucleation and growth, which depends not only on the degree of supersaturation caused by the decompression but also on the surface tension and viscosity of the melt phase (e.g., Mangan and Sisson, 2005) and the availability of nucleation sites (e.g., Hurwitz and Navon, 1994). Results from decompression experiments show that in rhyolitic melts, homogeneous nucleation (that is, nucleation within the melt) has to overcome substantial energy barriers and therefore requires very large overpressures (100–150 MPa; Fig. 8). In contrast, the undercooling required for bubble nucleation is much lower if nucleation can occur heterogeneously on crystal surfaces (Hurwitz and Navon, 1994; Gardner et al., 1999).

Bubble number densities preserved in pyroclastic material (pumice) produced by silicic Plinian eruptions suggest that bubble nucleation is commonly homogeneous and controlled by exsolution of a mixed (H$_2$O–CO$_2$) volatile phase (e.g., Cashman, 2004). This conclusion has important implications for conditions of magma fragmentation in silicic eruptions where delayed nucleation may generate explosive vesiculation bursts at high overpressures (e.g., Mangan et al., 2004; Scandone et al., 2007). Additionally, these data show that the kinetics of bubble and crystal formation are intimately linked and together may control transitions in eruption style. Unfortunately, there are no equivalent data for bubble nucleation in mafic melts because of experimental challenges. Measurement of bubble number densities in the pyroclastic products of low- to moderate-intensity eruptions, however, suggests that there is little to no activation energy barrier for bubble nucleation in mafic melts (e.g., Rust and Cashman, 2011), although textural studies of mafic Plinian deposits show that these systems can attain bubble number densities that approach those of silicic pumice (e.g., Sable et al., 2006; Costantini et al., 2010; Vinkler et al., 2012). Very high bubble number densities may reflect large supersaturations generated by rapid magma decompression, or possibly the effects of rapid (syrneruptive) crystallization and associated heterogeneous bubble nucleation.

The number and proportion of crystal phases also provide information on conditions of magma ascent, particularly when the stability of the crystal is controlled by the water content of the melt (e.g., Hammer et al., 2000; Toramaru et al., 2008; Blundy and Cashman, 2008). The time required for crystals to nucleate and grow in response to water exsolution depends on the melt composition and temperature (diffusion rate), the undercooling (driving force) for crystallization, and the presence or absence of phenocryst phases. For a single melt composition, decomposition experiments confirm that both the number density and volumetric proportion of plagioclase crystals record the conditions of decompression (reviewed in Blundy and Cashman, 2008; Hammer, 2008). Experiments also confirm observational evidence that decompression-induced crystallization can occur on eruptive time scales (e.g., Geschwind and Rutherford, 1995; Hammer and Rutherford, 2002). The combined effects of vesiculation and crystallization during magma ascent have profound consequences for the rheological evolution of ascending magma, and for the course of volcanic eruptions.

Magma Rheology

Rheology refers to flow behavior (that is, the deformational response to imposed stress). Magma rheology is usually measured by magma viscosity, which varies depending on the melt composition and temperature as well as the bubble and crystal content. The rheological properties of magma govern the dynamics of magma chambers, the wall friction generated by conduits flows, and therefore the rate of eruption, the kinetics of crystal and bubble formation, and the flow of lava on Earth’s surface.

Critical constraints on the rheology of silicic melts have been provided by experimentally calibrated models for melt viscosity as a function of composition, temperature, and water content (e.g., Dingwell, 1998; Giordano et al., 2008). Most silicate melts are Newtonian (for details, see Giordano and Dingwell, 2003) and have viscosities that vary from less than 0.1 Pa s to over 102 Pa s. Silicate melts that are either alkaline or hydrous, however, show non-Arrhenian behavior controlled by the effect of alkali/water on the melt structure. Understanding the effect of water, in particular, is important for modeling the behavior of ascending and degassing magmas. Importantly, the glass transition also varies as a function of melt composition, temperature, and shear rate (e.g., Dingwell and Webb, 1989; Webb and Dingwell, 1990). The glass transition
is a kinetic barrier (relaxation time scale) that separates liquid from glassy behavior, which in turn determines the behavior of silicate liquids when strained. One application of these data has been to define magma fragmentation in melt-viscosity shear space (e.g., Gonnermann and Manga, 2003). An important outcome of such an analysis is to demonstrate that viscous rhyolitic glass, in particular, may repeatedly break and re-anneal during slow ascent at shallow levels. Repeated fracture, in turn, may explain the characteristic “hybrid” earthquakes that accompany extrusion of silicic domes (Tuffen et al., 2003; Neuberg et al., 2006).

When the melt contains suspended crystals and bubbles, the magma can develop non-Newtonian rheological properties. The addition of a small volume fraction of crystals causes an increase in magma viscosity; when the crystal content is sufficiently high, crystal interactions generate a yield strength (e.g., Lejeune and Richet, 1995; Mueller et al., 2010; Castruccio et al., 2010; Fig. 9A) and either shear-thickening (shear-dilatancy) or shear-thinning behavior (e.g., Costa et al., 2009; Fig. 9B). The critical crystal volume fraction for particle interactions depends on crystal shape, with higher aspect ratios allowing interaction at lower volume fractions (Saar et al., 2001; Walsh and Saar, 2008). For this reason, crystallization caused by volatile exsolution during rapid decompression, which generates numerous small elongate or platy plagioclase crystals, can cause the apparent viscosity to change by many orders of magnitude as magma ascends from the reservoir to the surface (e.g., Sparks, 1997). The effect of crystals on viscosity is enhanced by the tendency of the remaining melt to become more silicic (more viscous) as crystallization proceeds (e.g., Cashman and Blundy, 2000).

The effect of bubbles on magma rheology depends on both bubble size and shear rate (e.g., Rust and Manga, 2002; Pal, 2003; Llewellin and Manga, 2005). The deformation behavior of bubbles in a shear flow is described by a nondimensional parameter called the capillary number \(Ca = \frac{r \dot{\gamma} \mu}{\Gamma} \), where \(r \) is bubble radius, \(\dot{\gamma} \) is strain rate, \(\mu \) is melt viscosity, and \(\Gamma \) is surface tension. In dilute bubble suspensions, the average shear rate and shear stress experienced by a sample can be determined from the dimensions of moderately deformed bubbles (Rust et al., 2003). Suspensions of bubbles in viscous liquids are shear-thinning (Fig. 9C): Addition of bubbles increases the viscosity at low \(Ca \) (small bubbles, low strain rates) but decreases viscosity at high \(Ca \) (large bubbles, high strain rates). Bubble suspensions are more strongly shear-thinning at higher bubble volume fractions (\(\phi_b \)). Under these conditions, the relative viscosity \(\frac{\mu_{susp}}{\mu_{melt}} \) approaches \(1 - \phi_b \) at high \(Ca \), because the bubbles are sufficiently deformed that resistance to flow is provided only by the melt fraction \((1 - \phi_b) \). Shear-thinning behavior means that ascent of bubbly viscous magma through volcanic conduits probably occurs by plug flow, with localization of shear along the conduit margins (e.g., Llewellin and Manga, 2005).

Conduit Controls on Eruption Style

The flow of magma along conduits is driven by pressure gradients between the deep source and the surface, and opposed by both friction

Figure 9. Basics of magma rheology. (A) Effect of adding spherical particles; y-axis shows viscosity normalized to reference (melt) viscosity; dashed lines at 40% and 60% particles show locations of rapid viscosity increase and maximum packing, respectively. Diagrams show schematic representation of particle concentrations (modified from Lejeune and Richet, 1995). (B) Schematic stress–shear rate diagram illustrating different rheologies; \(\sigma_y \) is yield strength (minimum stress that must be overcome for fluid deformation). (C) Effect of adding bubbles; viscosity is normalized to bubble-free values and shown as a function of \(Ca \) for different bubble concentrations (\(\phi \); modified from Pal, 2003).
along the conduit margins and the tendency of magma to degas and solidify. The rate of magma ascent controls the eruption style (explosive or effusive) by modulating the extent to which exsolving gas is retained within, or lost from, magma during ascent. Gas loss, in turn, is controlled by the relative rates of bubble rise, bubble coalescence, and the development of permeable pathways in magma and surrounding host rocks. As bubble rise is controlled primarily by magma viscosity, the orders-of-magnitude variation in viscosity between mafic and silicic melts means that mechanisms of gas loss are very different in mafic and silicic magmas.

Modeling Conduit Flow

Modeling the flow of magma through volcanic conduits requires coupling equations of mass and momentum with expressions for changes in phase proportions, and resulting changes in rheology. The numerous interacting factors that control flow rates explain the very rich variety of volcano behaviors (reviewed in Melnik et al., 2008). These complex interactions can be illustrated by a simplified reference case for effusive eruption from a pressurized magma chamber with elastic walls. Under these conditions, the flow rate of magma through a cylindrical conduit or parallel-sided fracture is controlled by the pressure gradient and wall friction, which, in turn, reflect both conduit geometry and magma viscosity. If magma viscosity and conduit dimensions are constant, the magma discharge rate will decline exponentially with time as pressure and volume in the chamber decline (e.g., Stasiuk et al., 1993). Deviations from this simple model will occur with (1) the growth of a lava dome, which can increase the column weight; (2) formation of chilled margins, which can reduce conduit width; (3) elastic deformation of the dike itself; (4) viscous dissipation at the flow margins where shear rates are high; and (5) variations of magma composition, temperature, and gas content, which can change viscosity.

Important feedbacks develop during magma ascent because of the competing effects of buoyancy (vesiculation and gas loss), viscosity (which changes with volatile loss and crystal formation), and wall friction. Such feedbacks may explain, for example, three different time scales of episodic behavior that have been identified at Soufrière Hills volcano, Montserrat (e.g., Costa et al., 2006; Wadge et al., 2008). The shortest time scale of several hours to a few days is recorded in deformation and seismic data, and in patterns of dome extrusion and Vulcanian explosions (e.g., Voight et al., 1999). This time scale has been explained by (1) gas pressure cycles that generate either stick-slip dome extrusion or destruction of an impermeable magma plug when overpressure exceeds a threshold (e.g., Wylie et al., 1999; Druitt et al., 2002b), or (2) crystallization coupled with rheological changes (Melnik and Sparks, 1999, 2005). Intermediate time scales are marked by 6–7 wk cycles of earthquakes, tilt, and eruptive activity that may be explained by opening and closing of dikes because of pressure fluctuations (Roman et al., 2006). The longest time scale is represented by 2–3 yr alternating periods of dome growth and quiescence. Long-timescale behavior can be explained if the magma chamber and conduit act like capacitors, that is, if they store energy because of elastic deformation of the wall rocks and then discharge magma episodically when the pressure exceeds some threshold. The time scale for this process reflects the elastic relaxation of the chamber, with longer periods being the consequence of larger chamber volumes (Barmin et al., 2002). Periodic behavior may occur when magma viscosity increases during magma ascent (because of devolatilization and crystallization) given an appropriate input flux and input/output viscosity ratio (e.g., Melnik et al., 2008; Fig. 10A). Magma rheology, particularly yield strength, will affect the overpressure threshold that must be exceeded for magma ascent (Fig. 10B).

The reference case described here includes numerous simplifications. For example, in the reference case, the magma chamber pressure changes only with volume, whereas chamber pressure may actually depend on other variables such the presence of bubbles and crystals or the influx of new magma. Bubbles can have a profound effect because gas is highly compressible; for this reason, bubble-bearing magma can sustain much higher chamber pressures during eruption, and therefore erupt much more magma, than a chamber without bubbles (Huppert and Woods, 2002). For this reason, the rise and accumulation of exsolved gas at the top of a magma chamber (a consequence of crystallization of volatile-saturated magma) can generate large pressure increases (Tait et al., 1989), as can influx of new magma.

Gas Behavior during Magma Ascent

Once mobilized, magma ascends because of volatile exsolution; ascent is therefore modulated by conditions of both vesiculation and gas escape, which depend critically on the viscosity of the melt. The low viscosity of basaltic melts allows bubbles to separate from the ascending magma when the rise rate of individual bubbles (the “drift velocity”) is rapid relative to the rate of magma ascent (Fig. 11A). As the ratio between drift velocity and ascent velocity increases, the distribution of the gas phase in the liquid changes from distributed bubbles (bubbly flow) to large conduit-filling bubbles (slug flow) to a continuous gas phase concentrated in the center of the conduit (annular flow).

Two-phase flow regimes are well characterized for water-gas systems (e.g., Mudde, 2005). Only recently, however, have volcanologists attempted to scale experiments and develop numerical models to examine two-phase flow
regimes in viscous fluids and large conduits. When gas is introduced into static liquid columns from below, high-viscosity fluids enhance bubble coalescence by decreasing the drift velocity of individual bubbles, thereby stabilizing slug flow at the expense of bubbly flow (e.g., James et al., 2009; Pioli et al., 2012). Internal vesiculation, the most likely source of distributed bubbles in volcanic systems, has not been studied experimentally from the perspective of two-phase flow regimes. Numerical models suggest that large conduit-filling bubbles may be dynamically unstable during buoyancy-driven ascent (Suckale et al., 2010) and that cyclic patterns of flow developed in two-phase bubbly magmas may explain the strong pulsing of Hawaiian, Strombolian, and violent Strombolian activity (e.g., Manga, 1996; Slezin, 2003). If crystals are present, gas migration may be hindered if bubbles are trapped within the crystal network, or aided by increased bubble coalescence within melt pathways. Either case will affect flow regimes (Belien et al., 2010). Together, these studies suggest that simple two-phase flow interpretations of mafic eruptive activity should be reconsidered.

Bubble rise is sufficiently hindered in viscous magmas that bubbles will remain in the melt from which they formed unless they connect to create permeable networks. Gas escape through a permeable foam may not only allow degassed lavas to form from originally gas-rich magma (Eichelberger et al., 1986), but may also explain sharp transitions between explosive and effusive styles of activity (e.g., Jaupart and Allegre, 1991). Permeability is commonly modeled using percolation theory, which shows that a touching network of spheres (the percolation threshold) will form at volume fractions as low as 30% (Sahimi, 1994). However, evidence from both pumice samples and recent experiments suggests that bubbles in rapidly vesiculating magmas do not always coalesce (become connected) at low vesicularities, and instead attain a connectivity, or percolation, threshold (P_c) at vesicularities of ~60%–70% (Rust and Cashman, 2011). The permeability threshold (P_c) for sufficiently rapid gas escape to prevent continued magma expansion is probably slightly higher than the percolation threshold (Fig. 11B). Available experimental data suggest that the percolation and permeability thresholds may increase with increasing melt viscosity, and decrease with increasing sample crystallinity, although these hypotheses need to be tested by additional experiments.

The high viscosity of silicic melts also promotes bubble deformation (by increasing C_i). Evidence for bubble deformation can be found in (1) the prevalence of tube (elongated bubble) pumice in high-intensity silicic eruptions (e.g., Wright et al., 2006); (2) observed bubble flattening; and (3) the common occurrence of pyroclastic obsidian in subplinian eruptions, which probably forms by efficient gas loss along conduit walls (Rust and Cashman, 2007) and may record shear-enhanced permeability development (e.g., Okumura et al., 2009).

Gas escape through the permeable magma leads to some interesting nonlinear dynamics. If bubbles within the magma are sufficiently connected to supply gas to the wall rock, rapid horizontal gas escape can be driven by pressure differences between the magma and low-pressure (wall rock) environments (Jaupart and Allegre, 1991). Gas escape (and collapse of the magma foam) is enhanced when permeability-porosity curves are hysteric, such that high permeabilities are maintained as bubbles collapse, thereby facilitating gas escape (Fig. 11B). Horizontal gas flow is enhanced at low pressures when fractured wall rocks are at hydrostatic, or atmospheric, pressure. Porosity decrease in the upper parts of the conduit can also occur if vertical gas flow exceeds the ascent rate of host magma (Melnik and Sparks, 1999). In this scenario, hysteric permeability functions predict rapid formation of compaction waves manifested by alternating regions of high and low porosity (Michaut et al., 2009). Degassing-driven crystallization may further enhance the hysteresis of porosity-permeability relationships in viscous magmas, as shown by the maintenance of high permeabilities to low bulk vesicularities in crystal-rich andesites (Melnik and Sparks, 2002).

Controls on Fragmentation

If gas is retained within magma rather than lost to wall rocks or the atmosphere, then ascending magma will erupt explosively. Rapid vesiculation (and expansion) under closed-system conditions accelerates magma to the surface, as illustrated by the popular Mentos® and Diet Coke® experiments (Coffey, 2008). These two processes—expansion and acceleration—form the core of fragmentation theory. In volcanology, “fragmentation” denotes the transition from a melt (± crystals) with included bubbles to a continuous gas phase with suspended droplets or particles (Fig. 12). Fragmentation may be brittle or brittle; in general, fragmentation is ductile in low-viscosity (basaltic) melts and brittle in high-viscosity (silicic) melts.
Ductile fragmentation results from instabilities in the accelerating liquid phase (e.g., Mader et al., 1994; Mangan and Cashman, 1996). Evidence for fragmentation in the fluid, rather than solid, state comes from the fluidal shape of mafic volcanic bombs and commonly associated pyroclasts such as Pele’s tears (droplets) and Pele’s hair (tightly elongated glass strands). Resultant clasts in Hawaiian eruptions are large—tens of centimeters—and substantially larger than constituent bubbles (Fig. 13). This suggests that bubbles accelerate the magma (through expansion) but do not exert a direct control on the fragmentation process (Rust and Cashman, 2011).

Silicic melts, in contrast, are apparently fragmented by brittle processes. Fragmentation may occur when expanding magma exceeds a critical vesicularity, when volatile phases contained within bubbles attain a critical overpressure, and/or when the expanding melt exceeds a critical strain rate. The vesicularity criterion for silicic Plinian eruptions has variously been placed at 60% (Kaminski and Jaupart, 1997), 64% (Gardner et al., 1996), and 75%–83% (Sparks, 1978; Houghton and Wilson, 1989) based on the observed range of vesicularity in preserved pumice clasts. The lower values derive from minimum preserved vesicularities and assume that higher vesicularities record postfragmentation exsolution prior to quenching. The critical overpressure criterion accounts for the pressure difference between a growing bubble and the surrounding melt (Melnik, 2000). The strain rate criterion comes from an observed threshold in deformation properties (from ductile to brittle) at high strain rates (Dingwell and Webb, 1989). These criteria are not mutually exclusive, and all require ascending magma to expand until the point of fragmentation. This, in turn, requires that the volume of gas in the component bubbles increases by decomposition (expansion) and volatile exsolution faster than it escapes by permeable flow through pathways of interconnected bubbles (Klug and Cashman, 1996). The small grain size of most silicic tephra deposits, and the uniformity of accompanying pumice textures (bubble size and number density; Fig. 13) suggest that fragmentation in silicic explosive eruptions is controlled primarily by bubble-bubble interactions (Rust and Cashman, 2011).

Fragmentation can also occur in highly viscous magma because of unloading by a downward-propagating decompression wave (Alidibirov and Dingwell, 1996; Fowler et al., 2010). Under these conditions, fragmentation may occur by: (1) propagation of an unloading elastic wave, (2) layer-by-layer bubble bursting in response to a pressure difference between the (pressurized) bubbles and the decompression wave, and (3) rapid gas flow through permeable networks (Alidibirov and Dingwell, 2000). In many situations, these mechanisms may act in concert. Experimental investigations of this process describe a minimum pressure differential (fragmentation threshold) that varies with porosity (permeability; Spieler et al., 2004; Koyaguchi et al., 2008; Mueller et al., 2008) and fragmentation efficiency that is controlled by the applied pressure/decompression rate (Kueppers et al., 2006a).

Volcanic Eruptions

Eruption styles, and associated volcanic landforms, were introduced descriptively in the previous sections. In this section, we examine ways in which conditions of magma storage and transport combine to generate some of the observed range in eruptive activity. For simplicity, we separate discussions of explosive and effusive eruptions, and then provide an overview of “transitional” eruptions, which show both explosive and effusive behavior.

Explosive Eruptions

Key observable parameters of witnessed explosive eruptions are the plume height (used to infer eruption intensity, or mass eruption rate), the duration of eruptive activity, and the final volume, areal distribution, internal structure, and grain-size characteristics of pyroclastic deposits. Here, we briefly review advances in understanding the dynamics of volcanic plumes and their relationship to the pyroclastic deposits that they produce.

Volcanic Plumes

Volcanic plumes form when fragmented magma and associated gases are ejected into the atmosphere. For ascending hydrous magmas, the pressure at the fragmentation level may be several MPa. At these pressures, the melt retains...
a substantial amount of water that may be released in the plume, or within density currents. Fragmentation, in turn, decreases the bulk viscosity of mixture by up to 14 orders of magnitude; the change in both bulk viscosity and bulk density causes the gas-particle mixture to accelerate to very high speeds (typically hundreds of meters per second) and to discharge into the atmosphere as a momentum-dominated jet. The exit conditions of the flow can be divided into three cases that are controlled by the flow velocity and vent shape: (1) The flow is able to adjust the atmospheric pressure at the exit; (2) the vent is sufficiently narrow that the mixture exits at above atmosphere pressure (choked flow) and adjusts to ambient pressure in the atmosphere; (3) the mixture reaches supersonic speeds through a diverging vent. The topic of such flows is a complex area of geological fluid mechanics that is far from completely understood (for more details, see Sparks et al., 1997; Ogden et al., 2008; Bercovici and Michaut, 2010).

Once the mixture emerges as a jet into the atmosphere, interaction with the air generates high eruption plumes and/or pyroclastic density currents. The former produce tephra fallout, and the latter form various kinds of pyroclastic surges and flows (and associated ash fall), which are the most destructive and hazardous kinds of volcanic phenomena. In both cases, the fundamental process of interaction is turbulent air entrainment into the high-speed erupting mixture; this has two major consequences. First, entrainment of air decelerates the ascending mixture by momentum transfer (the entrained air has to be accelerated). Second, the entrained air is heated, and the mixture density reduces as the plume rises. As erupting mixtures are almost always denser than air, they typically have enough initial kinetic energy to rise only hundreds of meters to a few kilometers into the atmosphere. Thus, formation of the towering convecting eruption columns commonly seen in Plinian eruptions requires air entrainment and heating of the air by the volcanic particles. This process generates potential energy by converting thermal energy in the magma to mechanical energy through buoyancy of the mixture. Typically, thermal energy is more than an order of magnitude greater than the kinetic energy.

Early model treatment of the erupting mixture of gas and entrained material as a homogeneous “pseudogas” led to the development of two end-member scenarios (Woods, 1995): (1) Heating of entrained air makes the mixture less dense than the surrounding atmosphere, and the jet transforms into a buoyant plume to form a high eruption column in the atmosphere; or (2) air entrainment is not sufficient to reduce the density of the erupting mixture below that of the atmosphere, and the flow runs out of kinetic energy and collapses to feed a pyroclastic density current. More recent models relax the assumption of homogeneity and allow larger particles to separate from the plume. These models show that fallout of dense particles as pyroclastic density currents can increase the rise velocity of the convective plume by decreasing its bulk density (e.g., Clarke et al., 2002). Importantly, these models also explain the common observation of simultaneous production of buoyant plumes and pyroclastic density currents.

Pyroclastic Fall Deposits

The characteristics of pyroclastic fall deposits can be related to the nature of the eruption plumes that produced them. For this reason, pyroclastic fall deposits are commonly used to assign both magnitude and intensity to prehistoric eruption deposits, information that is critical for volcanic hazard assessment.

Deposit magnitude is measured by changes in deposit thickness (or, ideally, mass) as a function of distance from the vent. Tephra deposits generally thin exponentially away from the source vent and can be used to estimate the total volume (or mass, if corrected for density) of a fall deposit (Pyle, 1989). Log thickness versus distance (measured as area) plots for Plinian deposits are thus linear, although they commonly show three or four different linear segments because of variations in fall behavior (e.g., Fierstein and Nathenson, 1992; Fig. 14). The fall behavior (terminal velocity) is controlled by the Reynolds number \(Re\), where

\[
Re = \frac{\rho U d_p}{\mu},
\]

where \(\rho\) is the particle density, \(U\) is the fall velocity, \(d_p\) is the particle diameter, and \(\mu\) is the viscosity of the air. The \(Re\), in turn, controls the drag coefficient, which controls the fall velocity. In subaerial fall deposits, particle size variations exert the primary control on particle \(Re\). For this reason, the steep proximal segment shown in Figure 14 can be attributed to fall of large particles (high \(Re\)) from the outer margin of the rising plume, the middle segment to fall of intermediate-size particles (transitional \(Re\)) from the umbrella region, and the distal segment to deposition of fine particles in a low-\(Re\) regime (e.g., Bonadonna et al., 1998; Alfano et al., 2011). The volume of the distal segment is the most difficult to quantify accurately, because fine ash layers are poorly preserved and distributed over vast areas of land and ocean. In submarine environments, density becomes a critical parameter in determining conditions of particle deposition (Cashman and Fiske, 1991); the density difference between pumice and seawater will vary greatly depending on whether the pore spaces within pumice are filled with air, steam, or water (Allen et al., 2008).

Eruption intensity (mass eruption rate) can be inferred from derived relationships among grain size, grain density, column height, and depositional characteristics (e.g., Carey and Sparks, 1986; Ernst et al., 1996; Burden et al., 2011). Although simple in principle, large uncertainties are introduced during the collection of field data (e.g., Biass and Bonadonna, 2011). Perhaps more important is characterization of the total grain-size distribution (TGSF), which is critical input for ash dispersion models (Mastin et al., 2008). Figure 14. Schematic of deposit thickness as a function of area covered. Linear segments on a log thickness versus log area plot indicate exponential thinning; individual segments reflect transitions in particle behavior as a function of Reynolds number (see text).
Pyroclastic Density Currents

Pyroclastic density currents are among the most hazardous of all volcanic phenomena, and yet they are also one of the least understood. Pyroclastic density currents are hot gravity-driven currents that travel at high velocities and inundate (and bury) large areas. They can form by lava dome collapse, by column collapse during Plinian/subplinian eruptions, or accompanying caldera collapse during large-magnitude explosive eruptions. The high velocities, high temperatures, and complex nature of these flows make it impossible to measure either their material properties or their dynamics directly. For this reason, pyroclastic density current studies combine field observations of deposits (ignimbrites) with laboratory experiments and numerical models of flow dynamics.

Detailed studies of individual ignimbrites show that neither the grain size nor the compositional variation of the ignimbrite at any given location can be simply related to the nature of either the eruptive mixture or the parent flow (Wilson, 1985; Branney and Kokelaar, 1992, 2003). Instead, ignimbrites show distinct facies that result from transport and deposition processes. An important factor from a hazards point of view is using the physical attributes of ignimbrites to constrain eruption time scales. For example, in the low-aspect-ratio Taupo ignimbrite, lateral variations in grain-size distribution are similar to vertical variations in a fluidized bed, which suggests that fluidization was critical to flow emplacement and, by extension, that emplacement was rapid and occurred as a discrete event (Wilson, 1985). In contrast, a high-aspect-ratio valley-filling ignimbrite generated by the 1912 eruption of Katmai, Alaska, preserves evidence of multiple discrete flows separated by time breaks of minutes to hours (Fierstein and Wilson, 2005). In the example of the Bishop Tuff, California, a coeval fall deposit has been used to infer an emplacement time of ~90 h for the entire flow-fall sequence (Wilson and Hildreth, 1997).

Field characterization of pyroclastic deposits is often complicated by postemplacement modification of primary ignimbrite textures, particularly those related to welding. Welding refers to the densification (porosity reduction) of pyroclastic flow deposits by a combination of sintering, compaction, and flattening of constituent material. These physical changes reflect the weight of overlying material, the viscosity and porosity of the deposit (controlled by eruption conditions, composition, and temperature), and the time available for deformation (a function of the rates of cooling and gas loss). For the end-member case of no volatile resorption, the degree of compaction is limited by the permeability of the deposit (e.g., Riehl et al., 1995). However, in thick deposits that accumulate rapidly, water vapor can dissolve into glass and facilitate pore-space collapse if pore pressures are sufficiently elevated and permeability is sufficiently low (Sparks et al., 1999). Welding characteristics thus place important constraints on flow emplacement conditions.

From a process perspective, pyroclastic density current deposits can be viewed as either incrementally deposited from the density current (e.g., Branney and Kokelaar, 2003) or deposited rapidly when the flow loses energy (e.g., Wilson, 1985). It is likely that these differences of view reflect the real complexities of these high-temperature multiphase flows. One way to combine these two perspectives is to view pyroclastic density currents as having two components, with overlying dilute turbulent ash-cloud surges and concentrated dense basal flows (e.g., Druitt, 1998). Pyroclastic density currents can then be described as a continuum between these two end members. This conceptual model allows the mass distributed between the two components to vary in space and time, or even to decouple from one another. Such flow transformations (between dilute and dense flows) are often caused by topographic changes and have major hazards implications (e.g., Giordano, 1998; Druitt et al., 2002a). A third component of pyroclastic density currents is the overlying buoyant ash plume that develops in parts of the current that become less dense than the overlying atmosphere (e.g., Calder et al., 1999). Co-flow, or coignimbrite, ash plumes can be generated either continuously during flow or abruptly, if the pyroclastic density current is initially well mixed but suddenly loses mass by deposition and becomes buoyant.

Another important characteristic of many pumiceous pyroclastic flows is their extreme mobility, even on very low slopes (e.g., Druitt, 1998). Recognition of this mobility has led to experimental studies of flow behavior as influenced by fluidization, gas retention, pore-pressure generation, and depositional processes (e.g., Dellino et al., 2010; Roche et al., 2010; Girolami et al., 2010). Fluidization occurs when the weight of a particle is balanced by the vertical drag force exerted by a flowing gas, and is therefore determined by the settling velocity of individual particles (Fig. 15A). A particular bed expanded by fluidization will collapse when the gas supply is reduced, causing the particles to be deposited (Fig. 15B). When viewed from another perspective, the gas retention (and resultant high pore pressures) within a fluidized flow required for pyroclastic density current mobility will be controlled by time scales for both diffusive outgassing and hindered settling of constituent particles (e.g., Druitt et al., 2007). Also important is the trajectory of particles and gas within the moving flow (e.g., Giordano, 1998).

From a broader perspective, theoretical and experimental studies of multiphase flows show that mixtures of high-temperature solids, liquids, and gases can simultaneously have properties of gas (e.g., compressibility), of solids (through small-scale interactions between particles), and of liquids. Moreover, individual particles can behave like rigid solids or ductile liquids, depending on time scales of deformation. For these reasons, most models use end-member descriptions and treat pyroclastic density currents as either a turbulent suspension (dilute) or a granular flow (dense). Granular flow dynamics, including fluidization by escaping gases, provide a framework for modeling the concentrated parts of pyroclastic density currents (e.g., Titan2D; Patra et al., 2005). Other important factors are interactions with topography that cause the dense basal portion of the flow to decouple from the dilute turbulent cloud (e.g., Andrews and Manga, 2011; Espositi Onogaro et al., 2011). Modeling the dense basal flow current is critical for predicting maximum runout distances of pyroclastic density currents (Doyle et al., 2008). Limitations of existing models are highlighted by field evidence for a wide range of emplacement temperatures (e.g., McClelland et al., 2004; Gurioli et al., 2005; Lesti et al., 2011), which point to the need to incorporate effects of temperature into existing models. Moreover, although separate models of dilute and dense flow components are useful for understanding individual end members, future models must strive to couple these two different regions to fully describe pyroclastic density current behavior (e.g., Neri et al., 2003).
Figure 15. Behavior of fluidized beds. (A) Schematic diagram of the expansion regime, showing the onset of fluidization at U_{mp} (gas velocity that creates maximum pressure drop tolerated by the particle bed) and the onset of the bubbling regime at gas velocity U_{ntr}. When $U_{mp} < U < U_{ntr}$, the bed expands uniformly (although the distribution of gas in this regime depends on the particle size, shape, and density distribution). (B) Schematic diagram of the collapse regime, which occurs when the gas flow is reduced. Initially, gas is lost as bubbles rise through the bed. When $H = H_{ntr}$, all macroscopic bubbles have escaped, and the bed slowly densifies as particles settle. U_{mb} is the gas velocity at which bubbling starts. Figure is modified from Drut et al. (2007).

Effusive Eruptions

Lava flows form when magma degassing is sufficiently fast relative to the rate of ascent that magma reaches the surface without fragmenting. This may occur by slow ascent of H$_2$O-rich magma accompanied by gas loss, or more rapid rise of H$_2$O-poor magma. Alternatively, clastogenic lava flows may form from re-fusion of fragmented material. Individual lava flows may range in volume from a few cubic meters to hundreds (or even a few thousand) cubic kilometers in large flood basalt eruptions. The range of flow emplacement conditions is reflected in the variability of flow morphology, length, thickness, structures, and surface textures. As with explosive eruptions, we consider separately the behavior of mafic and silicic lavas.

Mafic Lava Flows

The two primary laboratories for studies of mafic lava flows over the past two decades have been Hawaii, United States (e.g., Heliker et al., 2003), and Etna, Italy (e.g., Bonaccorso et al., 2004). Both have had frequent (or in the case of Hawaii, continuous) eruptive activity over this time period; as a result, both have contributed extensive observational data sets of lava flow behavior. Moreover, as Hawaii erupts H$_2$O-poor magma while Etna erupts hydrous magma, comparisons of these two systems allow assessment of the role of water (particularly degassing-induced crystallization) in lava flow emplacement.

In general, Hawaiian lava erupts at near-liquidus temperatures and cools rapidly as it flows. The rates and mechanisms of flow advance are therefore controlled primarily by development of a solid crust on the flow surface (Griffiths, 2000), as well as by cooling-induced crystallization of flow interiors (Cashman et al., 1999). In contrast, lava flows produced by more water-rich magmas, such as those of Mt. Etna, Italy, experience syneruptive crystallization because of volatile loss during magma ascent, and may therefore be highly crystalline on eruption. These flows have higher viscosities, and are shorter and advance more slowly, than Hawaiian lava flows (e.g., Kilburn, 2004). Common to both regions, however, are pahoehoe and ‘a’ā morphologies, surface textures that reflect both rheological and deformation rate thresholds (Figs. 16A–16C). These morphological differences may also be viewed from the perspective of simple and compound flow forms.

Simple lava flows may have lengths that are limited either by erupted volume or by cooling. When simple flows are cooling-limited, they are generally assumed to have lengths that are proportional to the extrusion rate (Walker et al., 1973; Harris et al., 2007), although this correlation is not always robust for Hawaiian lava flows (e.g., Riker et al., 2009). Also important for hazard assessment is the recognition that higher-effusion-rate flows advance more rapidly than lower-effusion-rate flows (Rowland and Walker, 1990; Kauahikaua et al., 2003), and that flow advance rates diminish with the distance that a flow has traveled. Together, these constraints indicate that lava flow hazards are determined by both initial rates of effusion and proximity to vent regions (e.g., Kauahikaua et al., 2002; Soule et al., 2004).

Another characteristic of simple lava flows is that they form channels by construction of lateral levees. Crystal-rich Etna lavas have a yield strength that promotes channel (and levee) development by inhibiting lateral spreading (Hulme, 1974). In contrast, fluid Hawaiian flows cool rapidly, so that levees develop because spreading is inhibited by solidification at the flow margins (Kerr et al., 2006). An understanding of controls on channel geometries is required for developing fully predictive models of lava flow advance (e.g., Harris and Rowland, 2001). Challenges to modeling include not only the common presence of multiple parallel channels (e.g., Favalli et al., 2010; James et al., 2010) but also the distributary nature of many channelized flows, which split because of topographic barriers and channel overflows produced by temporary increases in lava supply or channel blockages.

Compound lava flows may consist of tens to thousands of individual lava lobes and are most common in large and long-lived tube-fed pahoehoe flow fields, such as the Pu‘u ‘Ō‘ō-Kūpaianaha flow field that has developed in
Figure 16. Hawaiian lava flows. (A) Pāhoehoe lobe showing rapid cooling, skin formation, and surface deformation during emplacement. (B) ‘A‘ā flow with broken crust and exposed lava core. (C) Strain rate–apparent viscosity relationships and estimated transitional threshold zone (TTZ) separating pāhoehoe from ‘a‘ā (modified from Hon et al., 2003; Soule and Cashman, 2005). Inset photographs are backscattered electron images of quenched pāhoehoe and ‘a‘ā lavas; dark-gray phase is plagioclase, medium-gray phase is pyroxene, light-gray phase is glass; scale bar is the same for both images. (D) Parameterization from analogue experiments showing threshold in Ψ (advection time scale/cooling time scale)–Ra (Rayleigh number measures thermal convection strength) space. Open squares represent experiments in “mobile crust” (open channel) regime; filled circles show experiments in tube regime; line is boundary between regimes (modified from Griffiths et al., 2003).

Hawaii between 1986 and the present (Heliker et al., 2003). Lava tubes form where a solidified roof is created and maintained over a section of the flow (e.g., Peterson et al., 1994; Cashman et al., 2006). Because solidified lava has low thermal conductivity, lava tubes are well insulated and facilitate lava transport over large distances with little cooling (e.g., Helz et al., 1995, 2003; Ho and Cashman, 1997). Two important phenomena in tube-fed compound lavas are flow inflation and lava tube drainage. On low slopes, lava tubes form within spreading sheet flows. The tubes are typically filled with lava, such that continued flow through the tube is accompanied by cooling-induced lava accretion to the tube roof. Under these conditions, maintenance of a constant lava flux through the tubes requires that the flow inflate (Hon et al., 1994). Thus, Hawaiian lava flows with initial heights of only centimeters commonly inflate to several meters during prolonged emplacement. On steeper slopes, lava tubes are not completely filled, and persistent flow in large tubes can lower the tube floor by thermal and mechanical erosion (Kauaikaua et al., 1998; Kerr, 2001). When the lava supply rate diminishes, lava tubes may drain, sometimes creating a series of collapse pits. These features are common in older volcanic landscapes, and have also been recognized on both the Moon and Mars (e.g., Garry and Bleacher, 2011).

A physics-based description of cooling-limited behavior is that the flow has reached a critical Peclet number, which is the ratio of the flow rate to the product of the thermal diffusivity and flow distance (e.g., Pinkerton and Wilson, 1994; Kerr and Lyman, 2007). An extension of this concept shows that flow surface morphology is governed by the balance between flow cooling and flow advection (measured as $\Psi = U_s t_s / H_o$, where U_s is flow velocity, t_s is cooling time, and H_o is flow thickness), and the strength of internal convection within the flow (as measured by the Rayleigh number Ra; Fig. 15D). When cooling rates are large relative to flow advance, an insulating surface crust forms to produce lava tubes that feed pāhoehoe flows; when flow advance is rapid, the insulating crust is disrupted, the interior lava cools rapidly, and ‘a‘ā flows are formed.

The past few decades have seen an explosion of new tools applied to lava flow studies, including global positioning system (GPS), digital topographic data, and satellite-based remote sensing. Appropriate application of these tools requires balancing the spatial and temporal resolution with the areal coverage. Satellite-based thermal images generally have low spatial (1–4 km/pixel) but high temporal resolution, and are therefore used for monitoring entire flow fields (for reviews, see Oppenheimer, 1998; Wright et al., 2004). Satellite-based radar images have the advantages of both seeing through cloud cover and having higher resolution than satellite-based thermal imaging techniques. Radar correlation imaging, in particular, provides image resolution sufficient for monitoring individual lava flows (e.g., Zebker et al., 1996; Dietterich et al., 2012), as well as postemplacement flow volumes (e.g., Stevens et al., 1997; Lu et al., 2003) and cooling-induced subsidence (Stevens et al., 2001). High-resolution thermal imaging data can be obtained using airborne (e.g., Realmuto et al., 1992) and hand-held (e.g., Harris et al., 2005; Bull and Pinkerton, 2006; Spampinato et al., 2011) cameras. Similarly airborne (ALS) and terrestrial (TLS) laser scanning and ground-based radar provide high-resolution digital topographic data. In all cases, spatial resolution is improved at the expense of the aerial (and often temporal) coverage of satellite-based systems. These data are revolutionizing quantitative analysis of lava flows, as they allow detailed imaging of the thermal and morphological evolution of lava flows that can be related to the dynamics of emplacement (e.g., Harris et al., 2007). Particularly exciting is the advent of multitemporal imaging of active flows (e.g., Favalli et al., 2010; James et al., 2010), which provides detailed information on the development of individual lava flow channels and lobes.
Together, these new measurement capabilities can be used to test proposed models of channel development, lava tube formation, rates of flow advance, and flow conditions within lava channels; they also provide new ways to assess the hazard and risk posed by lava flow inundation.

Viscous Flows and Domes

Well-studied examples of viscous lava flows and domes are provided by recent activity at Mount St. Helens, United States (1980–1986 and 2004–2008; Swanson and Holcomb, 1990; Sherrod et al., 2008), Unzen, Japan (1991–1995; e.g., Nakada and Motomura, 1999), and Soufriere Hills, Montserrat (1995–present; e.g., Voight and Sparks, 2010). In all of these examples, degassing and crystallization during magma ascent cause very large increases in viscosity, and lava dome morphology is controlled by magma ascent rate through the kinetics of the phase changes. When magma ascent is rapid, volatiles are retained within the melt, and crystallization is limited. In this case, the relatively fluid erupting magma creates either pancake-like domes (e.g., Watts et al., 2002) or obsidian flows. Scaling analysis suggests that eruption rates of 20–100 m3/s during the first few months (2002) and with recent observations of extrusion fl ow morphologies (e.g., Lyman et al., 2004). These rates are consistent with strain rates observed in the melt, and crystallization is limited. In this case, the relatively fluid erupting magma creates either pancake-like domes (e.g., Watts et al., 2002) or obsidian flows. Scaling analysis suggests that eruption rates of 20–100 m3/s may be required to produce these flow morphologies (e.g., Lyman et al., 2004). These rates are consistent with strain rates obtained from microlite orientations (Castro et al., 2002) and with recent observations of extrusion rates of 20–100 m3/s during the first few months of rhyolite lava extrusion during the 2008–2009 eruption of Chaiten volcano, Chile (Carn et al., 2009). The dense and degassed nature of obsidian further requires efficient gas loss via both gas flow through a permeable foam (Eichelberger et al., 1986) and along permeable and fractured conduit walls (e.g., Tuffen et al., 2003; Rust et al., 2004; Cabrera et al., 2011).

When magma ascent is very slow, degassing and crystallization combine to produce magmas with high viscosity and non-Newtonian rheologies. In the extreme, the lava solidifies completely and extrudes as a rigid spine with marginal fault zones (e.g., Cashman et al., 2008; Pallister et al., 2008; Fig. 3D). Thus, a wide spectrum of lava morphologies, from pancake-shaped domes to shear lobes and spines, can be explained simply by variations in effusion rate and resulting changes in bulk rheology (e.g., Nakada and Motomura, 1999; Watts et al., 2002).

Transitional Eruptions

Eruptions may be considered transitional when they include both explosive and effusive activity; transitional activity characterizes eruptions fed by magma supply rates intermediate between those of the explosive and effusive counterparts. Mafic transitional eruptions often show simultaneous Strombolian/volcanic Strombolian explosions from a central scoria cone and lava effusion from the cone base. A classic example of this type of activity is the 1943–1952 eruption of Paricutin volcano, Mexico (Luhr and Simkin, 1993). Silicic transitional eruptions include alternation between lava dome/plug formation and Vulcanian to subplinian explosions, as seen at Mount St. Helens in 1980 (e.g., Cashman and McConnell, 2005) and at Soufriere Hills, Montserrat in 1996 (e.g., Voight et al., 1999). Although these eruptive patterns do not fit neatly into simple classification schemes, understanding transitions in eruptive behavior is critical for improved hazard assessment during volcanic crises.

Eruptions of low-viscosity mafic magma vary in explosivity with changes in rates of magma ascent. When the magma ascent rate is negligible, rising gas bubbles can coalesce and reach the surface as large bubble bursts, as commonly seen in lava lakes and open vent volcanoes such as Villarica, Chile, Sangay, Ecuador, and the eponymous Stromboli volcano, Italy. When magma ascent rates are higher, lava flows may emerge from lateral vents (e.g., Ripepe et al., 2005) or initiate simultaneous effusive and explosive activity that characterizes violent Strombolian eruptions (Pioli et al., 2008). At even higher rates of magma ascent, eruptions are subplinian. This progression reflects a decrease in the efficiency of synascent gas segregation (and resulting increase in eruption explosivity and tephra production) with increased rates of magma ascent (Fig. 17).

Intermediate/silicic magmas also have eruptive styles that reflect the rate of magma supply to the vent. In this case, eruptive style changes from Vulcanian to subplinian and finally to sustained Plinian explosive eruptions as the magma supply rate to the vent increases. The change in eruptive style probably reflects the efficiency of both degassing and degassing-induced crystallization relative to the velocity of magma ascent (Cashman, 2004; Mason et al., 2006). Of this spectrum, Vulcanian activity requires the most efficient gas loss from, and densification of, magma residing within shallow conduits (e.g., Fig. 11B). The nature of the resulting plug, and the characteristics of conduit-filling magma between eruptions, can be determined by combining analysis of ejected breadcrust bombs (e.g., Wright et al., 2007) with models that link bomb characteristics to conduit pressure (e.g., Burgess et al., 2011). Information on the repose interval between events and the volume erupted during each explosion can place important time constraints on the rates of gas loss, densification, and pressure buildup (e.g., Druitt et al., 2002b).

Vulcanian activity can trigger subplinian eruptions when the initial downward-propagating decompression wave produced by the Vulcanian event triggers degassing and eruption of gas-rich magma within the conduit. Both Vulcanian and subplinian eruptions are often associated with effusion of lava flows or domes.

Transitional activity at intermediate-composition volcanoes may alternate between Strombolian and Vulcanian explosions depending on the rate of magma supply, which controls the extent of crystallization and, as a result, the composition of the matrix melt (Wright et al., 2012). Examples include ongoing activity at Tungurahua volcano, Ecuador, and Llaima, Chile (http://www.volcano.si.edu/). This alternation can be explained by variations in rates of magma ascent, and resulting changes in crystallinity, melt composition, and mode of gas escape (Fig. 11A). Melt composition appears particularly important, as illustrated by a plot of sample crystallinity (phenocrystal, microphenocryst, and groundmass) and matrix glass composition (as wt% SiO$_2$; Fig. 18). This plot shows that the products of volcanoes that exhibit transitional activity are typically crystal-rich, and that the eruptive style (violent Strombolian, Vulcanian, or both) is strongly dependent on the residual melt composition.

Eruptions Involving Water

All of the eruptive behaviors reviewed herein relate to purely magmatic activity, that is, eruptive behavior that is controlled entirely by the physical properties and driving forces of the magma itself. However, rising magma may also encounter either groundwater or surface water/snow/ice
Figure 18. Plot of pyroclast crystallinity (phenocrysts, microphenocrysts, and microlites) as a function of SiO$_2$ (wt%) in the groundmass glass for products of transitional eruptions; eruptive style is labeled as Strombolian (includes violent Strombolian) and Vulcanian. All eruptive products are highly crystalline; eruption style appears to reflect matrix glass composition (viscosity). Volcanoes that erupt magma with bulk compositions of basaltic andesite to andesite can have different eruptive styles depending on the amount of groundmass crystallization (and resulting evolution of matrix glass). ET—Etna, Italy; VS—Vesuvius, Italy; CN—Cerro Negro, Nicaragua; SH—Shishaldin, United States; PAR—Paricutin, Mexico; TUN—Tungurahua, Ecuador; GAL—Galeras, Colombia; COL—Colima, Mexico; PCH—Pichincha, Ecuador; MRT—Soufriere Hills, Montserrat; MSH—Mount St. Helens, United States. Data are from Santacroce et al. (1993), Calvache and Williams (1997), Roggensack et al. (1997), Cashman and Blundy (2000), Luhr (2001), Stelling et al. (2002), Mora et al. (2002), Harford et al. (2003), Taddeucci et al. (2004), and Wright et al. (2012).

The overview provided here highlights the physical processes responsible for magma ascent, arrest in the upper crust, migration toward Earth’s surface, eruption, and emplacement as pyroclastic fall and flow deposits, or as lava flows and domes. Critical factors to most of these processes is the behavior of volatile phases as they exsolve and escape from the transporting magma, the response of the melt phase in terms of phase stability and crystallization, and the resulting changes in rheology. These complex interactions speak to the need for continued advances in our understanding of both physical and chemical aspects of the entire phase space that encompasses mixtures of gases, liquids, and particles. Additionally, because an important goal of volcanological research is improved assessment of the hazards posed by volcanic eruptions and the associated risks to human populations, improved understanding of the underlying processes must be translated to improvements in hazard and risk assessment. For this reason, the past few decades have seen a proliferation of cross-disciplinary research themes and publications related to volcanic activity, including volcano impacts on health (e.g., Hansell and Oppenheimer, 2004; Horwell and Baxter, 2006), culture (e.g., Cashman and Giordano, 2008; Grattan and Torrence, 2010), religion (e.g., Gaillard and Texier, 2010), and societal resilience (e.g., Paton and Johnston, 2006), as well as modeling of ash plumes (e.g., Mastin et al., 2009a) and issues of risk and uncertainty in volcanic hazard assessment (Sparks et al., 2012). Although a thorough review of these themes is outside the scope of this review, we end by placing basic volcanological research within the context of applied research during ascent and eruption. The past few decades have seen numerous advances in field, experimental, and theoretical perspectives on magma-water interactions, as reviewed in Head and Wilson (2003) and White et al. (2003).

In submarine environments, the style of magma-water interaction depends primarily on the height (pressure) of the overlying water column and its effect on vapor formation and expansion (e.g., Kokelaar, 1986; Head and Wilson, 2003). Although the overlying water pressure is unlikely to affect fragmentation of ascending hydrous magmas (which should reach fragmentation conditions well within the conduit), the water column will control the extent to which eruption plumes are suppressed by the weight of the overlying water column. Interaction with seawater can also enhance magmatic fragmentation by rapid quenching. Observations from many mid-ocean-ridge and ocean-island environments show extensive evidence for fragmentation driven by magmatic gases, including characteristic mafic fluidal pyroclast forms such as Pele’s hair (e.g., Davis and Clague, 2006; Clague et al., 2009). In contrast, hydrous mafic magmas that have experienced both degassing and crystallization during ascent appear more susceptible to secondary (quench fragmentation) processes (e.g., Deardorff et al., 2011). Silicic submarine eruptions may be highly explosive, as shown by silicic calderas on the modern seafloor that have produced substantial volumes of highly vesicular pumice deposits (e.g., Fiske et al., 2001; Wright et al., 2003; Tani et al., 2008). Recent review papers on subaqueous eruption-fed density currents (White, 2000), historic submarine pumice eruptions (Kano, 2003), and explosive submarine eruptions (White et al., 2003) discuss eruption and deposition of pumice on the seafloor. A critical factor for understanding pumice deposition is defining conditions under which pumice transforms from being less dense to being more dense than the surrounding seawater (e.g., Cashman and Fiske, 1991; Allen et al., 2008).

Magma-water interactions in subaerial environments include interaction of rising magma with groundwater aquifers, hydrothermal systems, or surface water (including ice and snow). Interaction of magma with external water typically produces abundant fine ash, with the small grain size reflecting the high energy provided by water expansion (e.g., Koyaguchi and Woods, 1996; Mastin, 2007). Introduction of external water may affect the course of magmatic eruptions, as illustrated by the 1875 eruption of Askja volcano, Iceland, where variations in groundwater availability controlled shifts in eruption style (Lupi et al., 2011).

Pyroclasts produced by phreatomagmatic eruptions often have lower vesicularities than pyroclasts from magmatic eruptions, a characteristic that is attributed to premature clast quenching because of water (e.g., Houghton and Wilson, 1989). The angular form of many clasts also points to the importance of quench fragmentation, particularly of rapidly chilled glassy rinds (Mastin et al., 2009b), as does the appearance of quench cracks on particle surfaces (e.g., Böttner et al., 1999; Dellino et al., 2012). Extensive fragmentation requires intimate mixing between magma and water. This is generally most efficient for low-viscosity mafic magmas (e.g., Zimanowski et al., 2003), although recent experiments suggest that shear-induced changes in melt deformation from ductile to brittle may facilitate water interaction in more viscous melts (Austin-Erickson et al., 2011). Both the influence of water on changes in eruption style and the ability of external water to increase the efficiency of magmatic fragmentation are important for evaluating volcanic hazards in regions where there is potential for magma-water interaction, particularly regions of distributed volcanism (such as cinder cone fields). An area of future research is in developing ways to map both the spatial extent of groundwater systems, and the effective permeability of host rocks in active volcanic regions.

CONCLUDING REMARKS

The overview provided here highlights the physical processes responsible for magma ascent, arrest in the upper crust, migration toward Earth’s surface, eruption, and emplacement as pyroclastic fall and flow deposits, or as lava flows and domes. Critical factors to most of these processes is the behavior of volatile phases as they exsolve and escape from the transporting magma, the response of the melt phase in terms of phase stability and crystallization, and the resulting changes in rheology. These complex interactions speak to the need for continued advances in our understanding of both physical and chemical aspects of the entire phase space that encompasses mixtures of gases, liquids, and particles. Additionally, because an important goal of volcanological research is improved assessment of the hazards posed by volcanic eruptions and the associated risks to human populations, improved understanding of the underlying processes must be translated to improvements in hazard and risk assessment. For this reason, the past few decades have seen a proliferation of cross-disciplinary research themes and publications related to volcanic activity, including volcano impacts on health (e.g., Hansell and Oppenheimer, 2004; Horwell and Baxter, 2006), culture (e.g., Cashman and Giordano, 2008; Grattan and Torrence, 2010), religion (e.g., Gaillard and Texier, 2010), and societal resilience (e.g., Paton and Johnston, 2006), as well as modeling of ash plumes (e.g., Mastin et al., 2009a) and issues of risk and uncertainty in volcanic hazard assessment (Sparks et al., 2012). Although a thorough review of these themes is outside the scope of this review, we end by placing basic volcanological research within the context of applied research...
to illustrate the challenges posed by the need for both short- and long-term forecasts of volcanic activity.

The goal of short-term eruption forecasting is to estimate eruption likelihood during periods of obvious volcanic unrest. Challenges relate to the complexity of natural processes and the uncertainties inherent in trying to interpret monitoring signals when the source of those signals lies well below Earth’s surface (and is therefore not observable). Forecasting is most accurate when multiple types of monitoring data are available, although detailed predictions of the time, place, and type of eruptive activity are difficult even with accurate data. However, as the number of active volcanoes with good monitoring networks increases, the hope is that patterns of pre-eruptive activity can be recognized and applied to interpretation of future events. In this regard, there is a push toward developing global databases such as WOVOdat, the World Organization of Volcano Observatories database (http://www.wovodat.org/), and GVM, the Global Volcano Model (http://www.globalvolcanomodel.org/). These databases can be used not only for pattern recognition, but also to provide input for development and testing of predictive models based on eruptive precursors.

Long-term forecasting for the purpose of volcanic hazard and risk assessment requires detailed knowledge of past volcanic activity. Volcanic hazard mapping and risk assessment of individual volcanic centers have evolved considerably over the past 25 yr, aided in large part by the development of new mapping and computer analysis tools (such as geographic information systems [GIS]). Hazard maps now have a push toward developing global databases such as WOVOdat, the World Organization of Volcano Observatories database (http://www.wovodat.org/), and GVM, the Global Volcano Model (http://www.globalvolcanomodel.org/). These databases can be used not only for pattern recognition, but also to provide input for development and testing of predictive models based on eruptive precursors.

ACKNOWLEDGMENTS

KVC would like to acknowledge support from the AXA Research Fund; RSC acknowledges support from the European Research Council. We also thank Guido Giordano and Clive Oppenheimer for helpful feedback on the first draft, and Brendan Murphy for suggesting that we write this paper.

REFERENCES CITED

Cashman and Sparks

Cashman and Sparks

Sorel, M., Cashman, K.V., and Kauahikaua, J.P., 2004, Examining flow emplacement through the surface

SCIENCE EDITOR: BRENDAN MURPHY
MANUSCRIPT RECEIVED 30 APRIL 2012
REVISED MANUSCRIPT RECEIVED 10 AUGUST 2012
MANUSCRIPT ACCEPTED 27 AUGUST 2012
Printed in the USA